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Abstract

We construct the classica@f-algebras for some non-abelian Toda systems associated with the
Lie groups Gl,(R) and Sp(R). We start with the set of characteristic integrals and find the
Poisson brackets for the corresponding Hamiltonian counterparts. The convenient block matrix
representation for the Toda equations is used. The infinitesimal symmetry transformations generated
by the elements of th&-algebras are presented.
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1. Introduction

The Toda systems constitute a remarkable class of two-dimensional integrable systems.
According to the group-algebraic approddt?] such a system is specified by the choice
of a Lie groupG whose Lie algebrg is endowed with &-gradation. There exist so-called
higher gradind3,4] and multi-dimensiondb,6] generalizations of the Toda systems.

The ‘space—-time’ for a Toda system is a two-dimensional manifold, and the ‘field space’
is the Lie groupGo corresponding to the Lie subalgelggpof g corresponding to zero value
of the grading index. If the grou@g is abelian the corresponding Toda system is said to be
abelian, otherwise one has a non-abelian Toda system. There is a lot of papers devoted to
abelian Toda systems, while non-abelian Toda systems are not very well studied yet. This
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is connected to the fact that until recently there was no convenient representation for such
systems. It was shown in papgf] that some class of non-abelian Toda systems can be
represented in a simple block matrix form. Later it was proven that it is the case for all Toda
systems associated with classical semisimple Lie gri@jp3 his led to the renewal of the
interest to this class of integrable systems; see, for example, fapé&.

In the present paper we investigate the symmetries of the simplest non-abelian Toda sys-
tems associated with finite dimensional Lie group&R) and Sp(R). Actually for the
systems under consideration there are an evident symmetry resembling the symmetry of
a Wess—Zumino—Novikov—Witten (WZNW) modgl3,14] and the conformal symmetry.
These symmetries do not exhaust all symmetries of the systems. More symmetries can be
found using the so-called characteristic integrals whose existence is related to the integra-
bility of Toda systems. These integrals give an infinite set of the densities of conserved
charges. The Hamiltonian counterparts of these conserved charges generate the required
symmetry transformations.

Thus, our strategy is as follows. We find the characteristic integrals for our systems
(Section 3EQs. (3.8) and (3.11Bection 7 Egs. (7.5) and (7.9) Then we proceed to the
Hamiltonian formalism (througho&ections 4 and)mand find the Hamiltonian counterparts
of the characteristic integral$éction 6 Egs. (6.7), (6.8), (6.12) and (6.13ection 7
Egs. (7.9)-(7.13)and conserved chargeSdction 6 Egs. (6.27) and (6.3)L) This allows
us to find the form of infinitesimal symmetry transformations in the Hamiltonian formalism
and write down their Lagrangian versidBdction 6 Egs. (6.28), (6.29), (6.32) and (6.33)

We show also that the set of characteristic integrals is closed with respect to the Poisson
bracket and form an object usually called a clasdiallgebra Section 6Egs. (6.9)—(6.11),
(6.14)—(6.16), (6.30) and (6.34he distinctive features of such algebras is that their defin-
ing relations are essentially non-linear and that they contain Virasoro algebras corresponding
to the conformal invariance. The systematic study¥ealgebras in the framework of gen-
eral qguantum conformal field theory was initiated by Zamolodchildd}. For a detailed
review of the subject we refer the reader to pdpét.

Although our paper contains original results, in some parts it has character of a review.
It is worth to note here that majority of the results Bhalgebras for Toda systems was
obtained by the method of Hamiltonian reduction that is based on the fact that Toda systems
can be obtained if one starts with a WZNW model based on a Lie groapd then imposes
relevant constraints on the conserved currents forming with respect to the Poisson bracket
two copies of loop algebras associated with the Lie algglptd@—19] Here the Toda ‘field
space’ arises as a factor in the generalized Gauss decomposition of the Liesgnobjzh
is valid only for a dense subset6f This results in that the true reduced system is different
from a Toda system; see, in this respect, pafigds26] Such our conclusion is justified
at least by the fact that the Toda systems have singular solutions corresponding to some
non-singular initial conditions, and that is impossible for a system being a reduction of
a WZNW model which does not have such solutions. Thus, the results on Toda systems
obtained with the help of the method of Hamiltonian reduction require verification.

It seems to us that the direct method used in our paper is more appropriate to the problem
under consideration than the method of Hamiltonian reduction. In particular, it allows to
identify the generators of the Virasoro algebras describing the conformal properties of the
model with the Hamiltonian counterparts of the components of the conformally improved
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energy—momentum tensor which is constructed by a standard procedurge(sem 6
Egs. (6.23)—(6.26)Section 7 Egs. (7.13)—(7.16)

2. Toda systems

In accordance with the group-algebraic approficR] the construction of equations
describing a Toda system looks as follows. Iebe a real or complex Lie group whose
Lie algebrag is endowed with &-gradation,

g= @ gm, [9m On] C Gmtn.-
meZ
Recall that for a giveZ-gradation ofy the subspacgy is a subalgebra gf. The subspaces
g<0= @D gm, 0= D gm
m<0 m>0

are also subalgebras @f Denote byGg, G .o andG- o the connected Lie subgroups Gf
corresponding to the subalgebggs andg .o andg- g, respectively.

Let M be areal two-dimensional manifold. Introduce local coordinate® @nd denote
them byz~ andz*. One can also consider the case wiis a one-dimensional complex
manifold. In this case™ is a complex coordinate o andz™ is the complex conjugate of
z~. Leta_ anda, be some fixed mappings froM to g_1 andg. 1, respectively, satisfying
the relations

8+617 = O, 8,a+ =0. (21)

Here and below we denote the partial derivatives @veaindz ™ by d_ andd... Actually we
assume that the subspages andg.1 are non-trivial. Generally, if is a positive integer
such that the subspacgs are trivial for—/ < m < 0 and O< m < [, one definea_ and

ay as mappings fronM to g_; andg.,, respectively. Restrict ourselves to the case when
G is a matrix Lie group. In other words, assume that for some positive intégeis a

Lie subgroup of the Lie group Gi(R) or of the Lie group Gly(C). More general case is
discussed in papg27]. In the case under consideration the equations describing the Toda
system are matrix partial differential equations of the form

ar(y Yoy = [a—, y tayyl, 2.2)
wherey is a mapping fromV to Go. Note thatEq. (2.2)can also be written as
,al]. (2.3)

Parametrizing the grou@o by a set of independent parameters, or, in other words, intro-
ducing some coordinates Gfp, we can rewrite the Toda equations as a system of equations
for ordinary functions, which we call Toda fields.

If the Lie groupGy is abelian we say that we deal with an abelian Toda system, otherwise
we call the system a non-abelian one. The complete classification of the Toda systems
associated with the classical Lie groups is given in pg®ler

_(ryy™ = [ya_y™t
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There is a constructive procedure of obtaining the general solution to Toda equations
[2,5,6] Itis based on the use of the Gauss decomposition related % ¢inadation under
consideration. Here the Gauss decomposition is the representation of an element of the Lie
groupG as a product of elements of the subgroGps), G ..o andGg taken in an appropriate
order. Another approach is based on the theory of representations of Lie ita?ips

In this paper we consider the simplest examples of non-abelian Toda equations based on
the Lie groups Gk, (R) and Sp(R) [6,28].

We start with the Lie grouy = GL2,(R). The case of the Lie group s¢(R) will be
considered irSection 7 The Lie algebragg = gl,,(R) of GL2,(R) is formed by all real
2n x 2n matrices. Below we represent an arbitrary 2 2n matrix x in the block matrix
form

x: <X11 X12) ’ 2.4)

X21  X22

wherexs, r, s = 1, 2, aren x n matrices.
Recall that an elemegte g is said to be the grading operator generatingZtgradation
under consideration if

Om = {x € g|[va] = mx}

In particular, anyZ-gradation of a finite dimensional complex semisimple Lie algebra is
generated by the corresponding grading operator.
Denote byr, the unitn x n matrix. It is easy to show that the element

1/, 0
q_i(o —1,,) 259

generates &-gradation ofgl,, (R). Here the subspaces 1 andgyi are the sets formed
by all block strictly lower triangular and strictly upper triangular matricegzf,(R),
respectively, and the subspaggis the set of all block diagonal matrices gif,, (R). All
other grading subspaces are trivial, and we have= g_1, g-0 = g+1.

Hence, the general form of the mappirgsanda. is

0 O 0 A
a_—<A O>’ a+—<0 O)’ (2.6)
whereA_ andA ; are arbitrary: x n matrix-valued functions o satisfying the condition
A, A_ =0, a_AL =0. (2.7)

In this paper we restrict ourselves to the cdse= 1, andA, = I,.

It is not difficult to describe the corresponding subgroths), G- andGg of the Lie
group Glp,(R). The subgroups; .o and G- consist of all block lower triangular and
upper triangular matrices of GL(IR), respectively, with unit matrices on the diagonal. The
subgroupGo is formed by all block diagonal matrices of GI(R).

Parameterize the mappingas

rv o
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whereI'® andI"@ are mappings fronM to the Lie group G (R). With this parameter-
ization we write the Toda equations in the form

a+(p(1)—1a_ F(l)) = _rO-1r@ a+(p(2)—la_p(2)) =rO-1r@, (2.9)
or in the form
a_(0,.rOrd-1y = _pr@prd-1 _(,rPr@-1=r@r®d-1-210)

The exact general solution to these equations was obtained in [Bdper
One can get convinced that the transformations

r'v - A, rva_, r' - A,r?a_, (2.11)
whereA_ and A are mappings fronM to GL, (R) satisfying the conditions
9+ A_ =0, 9_Ay =0

are symmetry transformations for the system under consideration. This symmetry, by an
evident reason, can be called a WZNW-type symmetry.
The system possesses also the conformal symmetry. Here the conformal transformations

T o), e Eh (2.12)
act on the space of solutionsBfis. (2.9) or (2.10), in the following way[8]:

re 25 = [0-¢7 @) @HIT2rPet @, o @), (2.13)

r®e 25 - [0-¢ @) O r2 ¢t ), ¢ @). (2.14)

The WZNW-type symmetry and the conformal symmetry do not exhaust all symmetries of
the system. To find additional symmetry transformations we can use the following proce-
dure.

First we find conserved charges. In the case under consideration we have an infinite set
of conserved charges provided by the so-called characteristic integrals. In the Hamiltonian
formalism the conserved charges generate symmetry transformations. So, we construct the
Lagrangian formulation for our system and then proceed to the corresponding Hamilto-
nian description. After that we consider the symmetry transformations generated by the
Hamiltonian counterparts of the conserved charges associated with the characteristic inte-
grals, and finally obtain their Lagrangian version. This allows us, in particular, to obtain
the WZNW-type symmetry transformations and the conformal transformations discussed
above.

3. Characteristicintegrals

A characteristic integral of a Toda system is, by definition, either a differential polynomial
W of the Toda fields satisfying the relation

9. W =0, (3.1)
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or a differential polynomialv of the Toda fields which satisfy the relation
a_W =0. (3.2)

By a differential polynomial we mean a polynomial function of the fields and their deriva-
tives.

Let us treat the manifold/ as a flat Riemannian manifold with the coordinatesand
z*+ being light-front coordinates and the metric tengdraving the form(A.2). The usual
flat coordinates® andz! are related to the light-front coordinatesandz* by the relation
(A.1). Using these coordinates we write the equaltyl) as

doW 4+ 01 W =0,

wheredg = 9/9z° andd1 = 9/9z1. Hence, the functior? is a density of a conserved
charge. Moreover, multiplyingy/ by a function which depends only an we again obtain

a characteristic integral. Therefore, a characteristic integral generates an infinite set of
densities of conserved charges. Similarly, multiplying a characteristic integral satisfying
the relation(3.2) by functions depending only ofit we again obtain an infinite set of
densities of conserved charges.

It is clear that any differential polynomial of characteristic integrals is also a character-
istic integral. Moreover, the Poisson bracket of the Hamiltonian counterparts of any two
characteristic integrals is again a characteristic integral. Therefore, a necessary step in in-
vestigation of characteristic integrals is to show that they form a closed set with respect to
the Poisson bracket, or, in other words, that they form an object calleaiyebra; see,
for a review,[16].

There are two main methods for obtaining characteristic integrals for Toda systems. The
first one is based on the construction of a generating pseudo-differential operator; see, for
example, paperfl7,29—-31] The second method is based on the usage of the so-called
Drinfeld—Sokolov gauge; see, for example, pap&rs-19,32] In the present paper we use
the latter method.

Itis well known that Toda@quation (2.2fan be obtained as the zero curvature condition
for some connection on the trivial principal fiber bundfex G — M [1,2]. We identify the
connection under consideration witlyavalued one-formw on M. Using the basis formed
by the 1-forms &~ and &, we write

w=w_dz" +w,dz",

where the components_ and w, are g-valued functions on/. The curvature of the
connectiorw is zero if and only if

do+wAw=0, (3.3)
or, in terms of the components,

0_wt — rw_ + [w—, w1] = 0. (3.4)
If we consider the componenis. andw. of the form

o_=a_+y oy,  oy=ylay (3.5)

then the zero curvature conditi¢®.4)is equivalent to the Todequation (2.2)
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Recall that the zero curvature condition is gauge invariant. It means that if a connection
w satisfies the relatiofB.3), then for any mappingy : M — G the gauge transformed
connection

oV =y oy +ytdy
satisfies the relatio(8.3) as well. In terms of the components one has
o =y o y+yly, of =y o + vy

In particular, if we consider the connection with the components giveg8 Byand choose
¥ = y~ 1 we will come to the connection, which we also denotesbith the components
w_=ya_y L, wy = —04yy T+ ay. (3.6)

And the zero curvature conditid3.4) gives the Toda equations written in for{2.3).
Let us return to our specific example of Toda equations. Write the companerdad
wy defined by(3.5)in the block matrix form

D 9 0 ro-1re
w_ = , w4 = ,
1, x@ 0 0

where we denoted
> = -1y p@, P _ r@-1 p@, (3.7)

Now consider the gauge transformation generated by a mapping — G.o. The
general form of such a mapping is

(I X
'ﬁ_(o 1)

For the componenbf we obtain the expression

1 1 2
(Z‘()—X (Z‘(,) —X)x—xE()—i-a_X)

v
(1)_ =
I, E(_z)-i-x

The Drinfeld—Sokolov gaug 7—19,32]in our case is fixed by the requirement
(@11 = @")22.

Itis clear that this requirement gives
x=5% - 29,

and we obtain

Ly 1w + 1 w2
v 2t T2t T g2t
w!. = ,
1
I, ——W
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where
Wi=—(ZP + 59 wo=-?G0-zP - 9.29) - zP5z@) (38

andx is a constant. We introduced the constain the definition of the quantitie®; and
W> for future convenience. Actually we will identify it with the constant entering the action
of the Toda theory.

For the componertb_’{ we have the expression

(0 ro-1r@ 4 1o, 59 5, 5@)
" \o 0 '

Therefore, if "D and I"® satisfy the Todaquations (2.9Jhenw? = 0, and the zero
curvature condition gives

8+a)f = 0

This equality implies that
8+ W]_ = 0, 8+ W2 = 0 (39)

Thus, the quantitie®; andW» are matrix characteristic integrals of the Toda system under
consideration.

As we have already noted, any differential polynomial of characteristic integrals is a
characteristic integral. Therefore, they form a differential algebra. The generators of this
algebra, the matrix elements @f; and W2 in our case, can be chosen in different ways.
Our choice is inspired by an intention to get simple expressions for Poisson brackets.

One can also start with the connection components of the {8tf). Performing the
gauge transformation witth : M — G _q,

I, 0
Y= . . ;
BEY-ED) 0

where
Ef) _ 3+F(1)F(1)—1’ 212) _ 3+F(2)p(2)—17 (3.10)
we obtain
1 W I
" 2k ! "
(U_;’_ = E)
L Sz tw
22T g2 Mt
where
_ = (1 =(2 = (1 w2 (2 (1
W=—«(EP+5D),  Wo=-2G0, 5P -0, 59) - 2P 5P,

(3.11)
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For the componenbf one has

" 0 0
==\ roro-1, 154 50 5(2) ’
rord=ty 3o -9-27) 0

and the Toda&quations (2.10yive w” = 0. The zero curvature condition implies that
a_W1 =0, d_Wp =0, (3.12)

and we end up with another set of characteristic integrals.

4. Lagrangian formalism for Toda systems

To write the action describing a Toda system we must be able to integrate over the manifold
M, in other words, we have to define a volume form. To this end, as in the previous section,
we treat the manifold/ as a flat Riemannian manifold with a metric tengoiThe next
ingredient needed is a non-degenerate symmetric invariant scalar product in the Lie algebra
g. We assume that is endowed with such a scalar product and denote &by

The action functionab[y] of a Toda system is the sum of three terms:

Syl = Scly] + Swzly] + Stlv]-

Let us discuss them in order.
The first termSc[y] is the action functional of the principal chiral field model. Using
some arbitrary coordinates ai, denoted by', we write

K N _ _
Sclyl = _E/M N By Yoy, y 100y Inl &z,

wherex is a constant. Note that jf is a mapping fromM to Go, theny =19,y is a mapping
from M to go.
The second term is the so-called Wess—Zumino term which is constructed as follows.
Suppose that the manifolf is the boundary of the three-dimensional maniftdd M =
dM. Let ¥ be an extension of the mappiggrom M to M. The Wess—Zumino term is

Swzldd = =5 [ X B 07 770075 o) 6%,
wherez! are some coordinates dii ande'’K is the absolutely skew-symmetric symbol. It
can be shown that the variations of the Wess—Zumino term are determined by the mapping
y only. Hence the corresponding equations of motion govern the mappilegving the
extensiony arbitrary. It is an example of the so-called multi-valued functional, and so, we
write justSwz[y] instead ofSwz[¥].

The last term is the Toda term, which has the form

Stlyl =« /M Bla—, yrary)v/Inl d?z.
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Herea_ anda. are fixed mappings fromM to g_; andg. 1, respectively, satisfying the
conditions

It +ehdjar =0, (/i — éNaja_ =0. (4.1)

The action functional of the WZNW model is the sum of the functiosals/] and Swz[y].
The functionalSt does not contain derivatives @f Therefore, the construction of the
Hamiltonian formalism for a Toda system is a trivial modification of that for the WZNW
model.

Let us show that the actio${y] does really give the Toda equations. One finds consec-
utively

1 N
8Scly] = By 1oy, —5; 1y,=1y. ),/ d?z, 4.2
clyl K/M (J/ Vm Inn"y=29;) ) VInldz 4.2)
_ 1 _
3Swz[y] =K/MB<V 3y, ﬁéuai()’ 18jy))\/|n|dzz, (4.3)
8S1[y] = & fM BBy, [a_. y~Ya )/l . (4.9)

To obtain from these relations the equations of motion one should use the fact that the
restriction of the scalar produstto the Lie subalgebrgg is non-degenerate. To show this

let us take two elements,, andx,, belonging tog,, andg, respectively. Fron{B.18)it
follows that

B([xmv Q], Xn) = B(xm, [Qa xn])a
and one obtains
(m 4+ n)B(xy, x,) = 0.

Therefore,B(x;,, x,) = 0 if n + m # 0. This implies that the restriction of the scalar
productB to go is non-degenerate indeed. Note also that

B|9<O =0, B|g>0 =0,

and thatB gives a non-degenerate pairing of the nilpotent subalgeghraandg-.o.
Since the scalar produdty, is non-degenerate, the relatioids2)—(4.4)give rise to the
following equations of motion

1 y y
——8;/Inlny Y,y + ly 190 +[a_, y syl = 0. (4.5)
il ! ’

Using light-front coordinates, one sees that these equations coincide with theqladen (2.2)
Here the condition§4.1) coincide with the condition§.1). RewritingEqg. (4.5)as

1

1 N N
—— &/ I8yt — 8y + [ya_yt ap] = 0,
Vil ! !

and using light-front coordinates, we comegq. (2.3)
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It is convenient now to introduce some coordinatésn G and work in terms of fields
&* defined as

gh=yloy =yt

Let g be the matrix-valued function which transforms the coording#gs) of the element
a € Gy into the element itself, then we can write

y =g().
Therefore, one has
y Loy = el (£)0;E",

where{e,} is a basis ofgo, and the functions;; are defined iMppendix B Using this
relation, we obtain for the density of the Lagrangian of the principal chiral field model the
expression

Lc = —3k/Inlcapt )08 E)n' ;5" 08",
where the quantitieg,g are given by(B.19). Introducing the notation

Ry () = capt (ML (), (4.6)
we write the density of the Lagrangidlt as

L = —Fiey/Inlhyn©n 06" 9",

Note thatr,,, (y) are the components of the bi-invariant metric tensor on the Lie gtaup
The Wess—Zumino term can be written as

Swzlyl = —« / 7o,
M

where the three-forr® is given by the relatio(B.21). Using the local representati@i.22),
we obtain

Swzly] = —« / YA
M
that gives
Lwz = — 3Kk, (el 86" 08"

Finally, for the contribution to the density of the Lagrangian of the Toda system, which is
due to the ternst[y], we have

L1 = «/In|Bla—, g (&) asg(®) = —xy/ I V(®).

Collecting all terms, we come to the following expression for the density of the Lagrangian
of a Toda system

L =Sk Inlhu @868, — Lk, ()€ 9:6849;8” — i/ InIV(E). (4.7)

Let us restrict ourselves to the case when the mappingsda. are constant. In this case
the Toda system under consideration is conformally invariant, and it is possible to define
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the energy—momentum tensor for it being symmetric and traceless. Recall that there are two
standard methods to define the energy—momentum tensor. The first method is the variation
of the action over the components of the metric tensor that gives the so-called symmetric
energy—momentum tensor. Note that in our case the Wess—Zumino term does not depend
on the metric, therefore it does not give a contribution to the symmetric energy—momentum
tensor. It may seem to be strange at the first glance. To demonstrate that this is, however,
the case, we start with the canonical energy—momentum téijiwzlnich is defined by

: aL ;
JTi = ——2= 5.6t 4 5.
|77| J 8(315“) /S + jﬁ

Itis convenient to write the expression for the components of the energy—momentum tensor
with upper indices. We have

1T = 13/ 101k )i Bk 918" — ieh ()€™ B16" 98"
+ 1 (= i/ Inlh N gL 318 — Sich (OO 9E” — i/ I V(E)).

Consider the terms containirig,, (£). They can be written as
—3k(e ) + €' + Xy, @) o i

The sume®yi + €l + Myl is totally antisymmetric with respect to the indides and
1. Since we work in a two-dimensional space—time, this sum is equal to zero, and we can
write

T = k™1 by () g 318" — San R (O)EHBE — kn V(&).

Thus, the canonical energy—momentum tensor of a Toda system has no terms arising from the
Wess—Zumino term. It can be shown that it coincides with the symmetric energy—momentum
tensor. For the symmetric energy—momentum tensor one has

V=0

3
B

where the usual notation for the covariant derivatives with respect to the metric tgissor
used. In terms of the mappingwe obtain

T = ™' B ory, v i) — ien' 0 By oy, v )
+kn' Bla—, vy~ tayy).
The trace of the obtained energy—momentum tensor is different from zero, namely
T/ = 2«Bla_, y tayy).

Let us construct the so-called conformally improved traceless energy—momentum tensor.
To this end first note that since the mappingtakes values ig_1, one can write

Bla_,y ayy) = —B(g, a_], y *ary) = —B(q, [a—, y rasy)).
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Taking into account the equations of moti@h5), we see that
1 1 ij -1 i -1
Bla_,y “ayy) = WB(Q’ %V Inln"y "0;y + €y 79;¥),

with account of the equality

. v]1=0

can be written as

B 1 o
Bla_,y tayy) = B Inln"y ;7).

Thus the trace of the energy—momentum tensor can be represented in the form
Tii = 2R€i’

where
R' = «kB(q. 1y 9;y) = kB(q. n"d;yy ™).

Now let us use the well-known fact that the energy—momentum tensor is defined ambigu-
ously. In particular, one can use instead of the tefi¥athe tensor

T ikj
7 — Tii +Sk,

where the componeni satisfy the relation

§iK — _ i
Itis clear that one has

7ij

I, =0 (4.8)
One can easily check that with the choice

sH = —217ij RF + 217kj R
we obtain a traceless and symmetric teri&8r This is the conformally improved energy—
momentum tensor for the Toda system.

Using coordinates for which the components of the metric tensor are constant, we come
to the expression

T = kB 0y, y 1059 — 3knin® By~ Loy, vy Lary)
+ 2B(q. 3 (y~0;9) — kmijn B(q, % (y~ap).

Since, the natural coordinates for a two-dimensional conformally invariant system are
light-front coordinates let us write the components of the conformally improved energy—
momentum tensor using such coordinates. First of all recall that since the conformally
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improved energy—momentum tensor is symmetric and traceless then
! /
T , =0, T,_=0.

Therefore, the relation@.8) take the form

0.T _ =0, 3_T,, =0. (4.9)
Itis convenient to choose the following explicit expressions for the non-zero components:
T = kB oy, y 10-y) + 2B(g, -y 19_y)), (4.10)
T, =«B@yyy ™ opyy ™) + 2cB(g, 01 (0 vy ™). (4.11)
For the Toda system discussed3action 2we define the scalar produBtby the relation
B(x, y) = tr(xy). (4.12)

It is clear that this scalar product is symmetric, non-degenerate and Ad-invariant. Taking
into account the relation®.5), (3.7) and (3.1Q)we obtain

T = Ktr[z(l)z + 2(2)2 + 8,(2(1) _ 2(2))]
Ty =t T2+ P2 40, (B - 2P,
The definitiong3.8) and (3.11pllow us to write
1 1 - _
TL_=Zu[Wi—2Wal,  Ti, = “u[Wf—2Ws]. 4.13)

Here the equalitie®l.9)can be considered as consequences of the reld8d)sind(3.12)

5. Hamiltonian formalism

In this section we follow mainly the paper by Bowcof33] where the Hamiltonian
formulation of the WZNW model and its gauged version was investigated. The approach
used in[33] is based on usage of a local representation of the closed three-form entering
the definition of the action, as an exact form. Actually we used this trick in the previous
section to construct the density of the Lagrangian. The validity of such alocal constructionis
justified by the fact that the final Hamiltonian equations do really imply the initial Lagrangian
equations.

Consider again a general Toda system. Assume that® andx = z! are flat Minkowski
coordinates or/. In these coordinates one has

it =+ °
M=o 1)

The expression for the density of the LagrangiéuT) takes the form

L= 3khyu ()35 88" — Sichyu(8)05E"0xE” — KAy (§)BE"3cE” — k V().
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Here and below we denote = 9/dr andd, = 9/9dx. The density of the energy functional
is

L
= 3t5“ - L= E
9(0:&M) 2
For the generalized momenta one has the expression

T e

o (§)0,6"0,8" + ghw(é)axS“axE” + 1 V(&). (5.1)

Kh;w(é)atgv - KA#U(S)axsv-

We can write the inverse relation which expresses the generalized veldgitiegia the
generalized momenta:

& = %h’”(é:)[ﬂu + e (§) €71,
where
R (V) hpu(y) = 8l
Substituting the above expression fpg# into the relation5.1), we obtain for the density

of the Hamiltonian the following expression:

H= %h“v@)[ﬂu + 1 () 0xEP ][0 + Kchro (6)9:E°]
+ SO0 0,E" +V(E).
Recall that the non-vanishing Poisson brackets for the fi¢ldad the generalized momenta
m, have the form
{&"(0), T ()} = 84 3 (x — x).

Using this relation, one can write the Hamiltonian equations of motion and prove that they
are equivalent to the Lagrangian equations of motion.

The phase space of the system is described by the §éldsd the generalized momenta
7. They depend on the choice of the coordinatésn Go. To describe the phase space in
terms independent of this choice, consider first the quantities

Jo = = XEE[m + 1hup () 9:E] + kecay 0 (§):E”,

where the function’ (y) are defined byB.7). As is shown inAppendix G the Poisson
brackets for the quantitieg, (x) are

(@), joON)} = Jjy(0) g 8(x — x') = 2ucap & (x — X). (5.2)

Thus, we have a realization of the so-called current algebra.
It is also convenient to consider the quantities

Jo = —XE@ 7 + 1chpup(E)35EP] — KcayO) (£)9:E”,
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where the functionéﬁ (y) are the components of the right-invariant Maurer—Cartan form
of Gg and the functionst’y (v) are defined by the equalif§3.11). One can show that

{Ja(x), Jp(x)} = =7y () 5,3 d(x — x') + 2ucap ' (x — x') (5.3)
and that
{Ja(x), p(x")} = 0. (5.4)

The main relation used here is the equali@y4).
Now, using the definitior§4.6) of ., (y), we obtain
W () = XEWP X,
where
S 8‘;.

The above equality allows us to demonstrate that

¢ jojp = M@ + khpupE):E [0 + Koo (8)8xE°]
— 20, EM 7 A+ KM (8)0xEP] 4 KPh 1 (£) 0, EH 0,8

Further, the relatioB.20) leads to another representatiorgf, (y) andi*"(y):

() = 05 (Deapbl (), B () = XEMEPXR(0).

Using these relations we find

¢ Jadp = M@y + khupE)8:E [y + Ko (§)xE°]
+ 2005 EM 700+ Ky (E)BxEL] + kP (§) D5 EM BE”.

It becomes clear that the density of the Hamiltoritanan be written in the Sugawara form
[34,35]

1 _
H = @[c“ﬁjajﬁ + ¢ Jadpl + kV(E). (5.5)

The quantitieg,, andj, do not depend on the choice of coordinatésn the Lie groupGgo
but they depend on the choice of the bdsig. To get rid of this dependence introduce the
matrix-valued quantities

Jj= eacaﬂjﬂv = eacaﬁjﬂ-
Note thatj and j are the Hamiltonian counterparts of the quantitiesy~13_y and
—kd4yy~ 1L, respectively.

Our next task is to rewrite the relatios.2)—(5.4)in terms of Poisson brackets of the
matrix-valued quantitiegandj. Actually we will considerj andj as functionals on the phase
space of the system taking values in the associative algebra(®gatThe corresponding
definition of the Poisson bracket for algebra-valued functionals on a phase space and its
main properties are discusseddppendix D
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Consider the elemenit € go ® go defined as

C=¢,Q® eﬁc""g. (5.6)
Introducing the notation

Y = e,gcﬂ“,
we can write

C:e“®eﬂca,3 =" Qey = ey D e*.
Using the relation

[C.e" RIN]|=[IN®eV,Cl = fgﬁe"@eﬂ,

we obtain
()R} = —[C, Iy ® j(0)] 8(x —x') = 2%C ¥ (x — x), (5.7)
{J0R1()} =[C, Iy ® J(0)] 8(x — x') + 2C ¥ (x — x'), (5.8)
{j(0)®j(x"} = 0. (5.9)

Using the relatior{B.13), we come to the equality

(0, ja()} = —y(x)ea 3(x — x)
that gives

YORj(x)} = —(y(x) ® IN)Cd(x — x'). (5.10)
Similarly, the relation(B.14)implies

{Y0Q7()} = —C(y(x) ® In) 8(x — x). (5.11)
It is also clear that

Y@y} =0.

Taking into accoun(5.5), we obtain

1 ... - - _
H =3 [BU, )+ BG, D] = kBla—, yayp).
It is not difficult to write down the corresponding Hamiltonian equations. If we choose as

the basis quantities describing the phase space of the system the quaatitiswe come
to the equations

1. ) ) _
by =0y =y, dj=—0j—Klay Yaiyl. (5.12)
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In the case when the quantitigsandj are chosen as the basis quantities, one obtains

1_ _ _ _
8[)/ = —3x)/ - ;]ya al.] = ax] - K[V“—V 19 a-‘r]' (513)

Itis clear that the obtained Hamiltonian equations are equivalent to thestpdions (2.2)
and (2.3) respectively.

6. W-algebra

In this section we return again to the Toda system defin8éation 2and find the Poisson
brackets for the characteristic integrals giversiction 3 Recall that the Lie grougo in
the case under consideration is isomorphic to the direct product of two copies of the Lie
group GL,(R), and the Lie algebrgg is isomorphic to the direct product of two copies of
the Lie algebral, (R).

The standard basis of the Lie algelgta(R) consists of the matric@, Lj=1,...,n,
defined as

(e))k = sks].

Certainly, these matrices form a basis of the algebrg, 3t too. The main property of
these matrices is provided by the relation

e{ei = 655,{.

Using this relation and the equality
tr(el) = 5/,

one obtains
tr(elel) = 8ls].

A natural basis of the Lie algebyg is formed by the matrices

. J . 0 O
g (0, E (0 0) e
0 O 0 €;

Recall that we assumed the Lie algepgan the case under consideration to be equipped
with the scalar produck defined by the relatio(¥.12) Therefore, we have

BED EPY = (B EY) = sls]s™.

From the natural block matrix structure of the spage® go, we see that the elemeat
introduced by(5.6) has in our case the form

o c, O 6.1
“\o ¢ )’ 6.1)
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where the elemer®, € gl,(R) ® gl,(R) is defined by the relation
i
Ch=¢® e’j.
One can verify the validity of the equalities
C,,(e{@ei) :e‘,ﬁ@eﬁ, (e'i/®e§€)C,, :ef®e£.

These imply that the action of the permutation operatoon gl,(R) ® gl,(R), or on
Mat, (R) ® Mat, (R), can be realized with the help of the eleménas

Pla®b) =C,(a® b)C,,.
Note also that
C2=1,1,.

It is quite natural to use for the mappipghe parameterizatiof2.8) and for the quantities
j andj the parameterizations

. j(l) 0 o :7(1) 0
Lo g2) T o 7o)

where the functiong7® and 7, r = 1,2, take values ingl,, (R). It is clear that the
relations(5.7)—(5.9)can be written now as

(TO0RTW )} = —([Cpy Iy & T (0] 3(x — x') + 2C,, &' (x — x))8",
(6.2)

(77 00T" ()) = (Cor I ® T (0] 3(x — X) + 24C, ' (x — x)8'S,  (6.3)

(TOWeI" o)y =0, 6.4)
and the relation§s.10) and (5.11)ake the forms

(r?'meJ®u))=—-I"x) @ 1,)C, 8(x — x)8", (6.5)

(ro2me7% (@) = —Co(M () @ I,) 5(x — x)8'™. (6.6)

The Hamiltonian equations of moti¢b.12)are now of the forms

ar®—ar® _lro o 50 - 5 20 rO-1p@)
K

at]"(z) — 8XF(2) _ }F(Z)j(z)’ alj(Z) — _axj(z) _ K]"(l)—lj"(z)7
K
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while for Egs. (5.13)we have

7D 7D

1-
ar®=_a,r® _=7Yr® 570 _ 5 7Y 4 r@pd-1,
K

1-2 -(2)

ar?=_p,r@_-79r@ 37 _§ 7@ _r@pro-1
K

Let us find Hamiltonian counterparts of the characteristic integfalsind W, defined by
the relation(3.8). There is no problem with the characteristic integ#al Its Hamiltonian
counterpart obviously is

Wy =J9 4+ g9, (6.7)

The characteristic integréit, contains higher time derivatives and has no direct Hamiltonian
counterpart. However, here one can use the fact that characteristic integrals are defined up to
terms vanishing at the equations of motion. Therefore, one can use the equations of motion
to get equivalent characteristic integrals which do not contain higher time derivatives.

For the case under consideration, using the defin{Bon), the equations of motiof2.9)
and the equality

d_ = 0, — 20y,
we obtain

10-2P — 5 5@y = —rO-1r@ _ 5,5 _5 59,
Hence, the Hamiltonian counterpart of the characteristic intdgsab

W= JDIP — k0, YV - 8,7?) + £2rH-1r@, (6.8)
The Poisson bracket for the characteristic inteyvalfollows directly from(6.2)

Wi1(x)@W1(x)} = —[Cp, I @ Wi (x)] 8(x — x) — 4kCp, &' (x — X'). (6.9)
The calculations needed to obtain expressions for other Poisson brackets are more compli-
cated. The main formulas are presentedppendix E The final result is

W1 () @W2(x)} = —[Cp, I ® Wa(x)] 8(x — x')

—k[Cp, I, W1 (X)) 4+ &' (x — X)), (6.10)

Wa(x)@Wa(x')}
= (In @ Wa(x))Cpr (I @ W1(x)) 8(x — x')

— (I @ W1(x))C (I, @ W2 (x)) 8(x — x')
— 3P[Cp Iy ® BPWiL(0)] 3(x — x)
+ «[Cny In @ Wa(x) + Wo(x'))] 1 &' (x — x)
— k(Iy @ Wi(x))Cr (I @ W1(x)) &' (x — x')
— k(I @ Wi (x'))Cri(Iy ® W1(x)) &' (x — x')
+ 317[Cp, I ® WL(0) + WL ()] (x — X)) + 43C, 8 (x —x).  (6.11)
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Some terms of the last formula can be combined into a commutator. Actually it would give

a more compact expression. Nevertheless, we prefer to use the above form of the expres-
sion which is more convenient for the comparison with the case considered in the next
section. After some redefinitions one can get convinced that the obtained expressions for
the Poisson brackets of the characteristic integrals coincide with the expressions obtained
via the method of Hamiltonian reductidB6]. Our direct rederivation of these expres-
sions can be considered, in particular, as the verification needed by the reasons given in

Section 1 i i
The Hamiltonian counterparts of the characteristic integtaleaind W, are

Wy =T%+ 7%, (6.12)
Wo = 7279 £ k@0, 7P - 8,7%) 4k 2r@ro-1 (6.13)
and the Poisson brackets for them look as

W1 ()WL)} = [Cuy I @ Wi(0)] 8(x — x') 4+ 4xC,, ' (x — x'), (6.14)

VL) @Wo (X))} =[Cr, In @ Wa(x)] 8(x — x') + & [Cp, I @ Wi (x)] 1 8 (x— '),
(6.15)

V20 @W2(x))
= — (I @ W2()) Cu (I @ W1(x)) 8(x — x')
+ (In @ Wi(0)Cn(In @ Wa(x)) 8(x — x')
+ 3K7[Co. Iy ® PWL(0)] 3(x — X)
— K[Cns In @ W2(x) + Wax)]4+ 8 (x = x')
+ Kk (I @ Wi(0) Ca (I © W1(3)) 8 (x — x')
+ K (I @ Wi(X) Cu (I @ W1 (X)) &' (x — x')
— 3P[Ch, 1y ® OWV1(x) + W ()] (x — x') — 43C, 8" (x —x).  (6.16)
Here we again write the result of our calculations in the form which is convenient from the
point of view of the example considered in the next section.
Let us find the Poisson bracket for the Hamiltonian counterpattsand 7, of the
componentg” _ and7’,_, of the energy—momentum tensor. It is known that they are the

generators of the conformal transformations.
As follows from(4.13) one has

1 1 - -
T/ _=ZtW2—2W,], Tl = -t[Vi—2Ws.
K K
To find the Poisson brackets in question, we start with the relation

WED@W1(X)} = —[Cpy L @ W3(x)] 8(x — x)
—4[Cy, I, @ W1(0)] 4+ 8 (x — X)). (6.17)
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This relation gives
WEQWE()
= —[Cp, I @ W3] 8(x — x') = [Cor, W1(x) @ WE()] 8(x — X))
—~2[Cpy Iy ® W1(X)W1(x) — W 1 ()W 1(x)]3(x — x')
—2[Cpy Iy @ W2(x) + W3 )]+ 8 (x — )
—4C(W1(x) @ W1(x) + W1(x) @ W1(x)) &' (x — ). (6.18)

For any Ma}, (R)-valued functional§ andG one obtains
{trF, tr G} = tr{FRG).
Besides, for any;, b € Mat, (R) one has
tr(a ® b) =tratrb,
and
tr(Cu(a ® b)) = tr((a ® b)Cy) = tr(ab).
Using these relations, we obtain frqB.18)the equality
{tr W2(x), r W2(x')} = —8r(tr Wa(x) + tr W2(x')) 8 (x — x'). (6.19)
The relation
MV O@W2(x)) = —[Ca, Wi(x) ©@ W2 ()] 8(x — &)
— Cn(Iy @ Wi(x)W2(x) — Wa()Wi(x) ® 1) 8(x — x')
— «[Cp, W1 (x) @ W1 (x)]4 8 (x — )

— kCp(Iy @ Wi ()W1(x') + Wi(xYW1i(x) ® I,) 8 (x — x')
(6.20)

helps us to obtain that
{tr W2(x), tr Wa(x)} = —2c(tr W2(x) + tr W2(x')) &' (x — x'). (6.21)

Further, the relatiof6.11)gives

{tr Wo(x), tr Wo(xX')} =2c(tr Wa(x) +tr Wa(x') 8 (x — x)
— K (rW2(x) + tr W3 () 8 (x — x') + 43 8" (x — X)).
(6.22)

Taking into account the relatior(6.19), (6.21) and (6.22)e get

(T, T () = —&T () + T/ _(x) & (x —x') + 16en & (x — X').
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In a similar way we come to the equality
(T, (0, T (x D)) = AT () + T () (x — &) — 16m d” (x — x),
and it is evident that
(T _(0, T{ ()} =0.

It is clear from these relations that the quantities

V) =37 _x)., V@) =37/, (6.23)
are generators of two copies of the Virasoro algebra:

Vx), V) = —(V(x) + V() &' (x — x') +knd" (x — x'), (6.24)

V@), V) = V) + V) 8 (x — ) —knd" (x — x'), (6.25)

V@), V(")) = 0. (6.26)

The generatord3’(x) and V(x) produce infinitesimal conformal transformations via the
following standard procedure. Let us define

Ve(t) = /dx e(t, x)V(t, x),

wheree is an arbitrary infinitesimal function oW which satisfies the relation
04e = e + 0xe = 0.

Actually, V. is an integrated characteristic integral, therefore, it does not depemd on
Consider the infinitesimal transformations defined for an arbitrary obser#ablas

dF(t) = {Ve (1), F(n}.

It can be shown that these transformations are the infinitesimal version of the conformal
transformations described by the relati@?13) and (2.14ith ¢T(z+) = zT. Similarly,
the quantities

Vi(t) = / dx 2(r, x)V(t, x),

where
0_e€=20,e—0,e=0

generate the infinitesimal conformal transformations described by the re{atis) and
(2.14)with¢=(z7) =z~

Now we will find the conformal weights dfy; andW,. Recall that a fieldp(x) has the
conformal weight: with respect ta/(x) if

V), 2(x)} = — (@) + (h —DPA)N(x —x) +-- -,
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where the dots stand for possible central terms, and it has the conformal Weigtit
respect to)(x) if

V(x), ()} = (@) + (h — DO ) & (x — x) +--- .

Introduce two mappingsirand tp from Mat, (R) ® Mat, (R) to Mat, (R) given by
tri1(a ® b) = (tra)b, tro(a ® b) = a(trb).

It can be verified that these mappings satisfy the relations

tr1 (Cu(a ® b)) = ab, tri((a ® b)C,) = ba,
tra(Cn(a ® b)) = ba, tra((a ® b)Cy) = ab.

For any Ma}, (R)-valued functional§” andG one has
tr {FRG} = {tr FRG}, tro{ FRG) = {F®tr G}.
Using the above relations, one obtains fr{@rl 7) and (6.10)he equalities
{rW2@Wi(x)) = —8cWi(x) 8(x — x),
{tr Wa()@Wi(x)} = =2cW1(x) 8(x — x').
Hence, we come to the relation
VEOWL(X)} = —Wi(x) 8 (x — x°).
From the relatior{6.20)we obtain
{tr W) @Wa(x)} = —20M1(x)Wa(x) — Wa(x) W1 (x)) 8(x — X))
N UASRRACHLICEEDE
and the equality6.11)gives
{tr Wa(xn)@Wa(x")}

= —(Wi(x)Wa(x) = Wa()W1(x)) 3(x — x') — kOVF(x) + W2(x') & (x — x')
+2cWa(x) + Wa(x')) 8 (x — x') + 431, 8" (x — X').

Consequently, one has
VEO@Wa(X)} = —Wa(x) + Wa(x') 8 (x — x') — 2428 (x — x').

Thus, the characteristic integra, has the conformal weight 1 and the characteristic
integralW, has the conformal weight 2 with respect¢x). Similarly, we obtain that the
characteristic integralV; has the conformal weight 1 and the characteristic integval
has the conformal weight 2 with respectior).
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In the end of this section we find the form of the infinitesimal symmetry transformations
generated by the characteristic integrals. First consider the quantity

We(t) = /dx trles (s, x)Wi(t, x) + e2(t, x)Wa(t, x)], (6.27)

wheree; ande, are arbitrary infinitesimal matrix-valued functions #h satisfying the
relations

0461 = 0,61+ 0,61 = 0, 0482 = 0182 + 0,82 = 0.

The infinitesimal transformations generatedWy(r) written in the Lagrangian form are
8TV = r'Wey —4er®W @1y r@eg; — Ler®y_e,, (6.28)
87 =Py — kM@ epr®=15_r® 4 Lir@y_e,. (6.29)

According to(6.9)—(6.11) the generatorB), satisfy the relation
Wi, Wol = Wequm + Cp, v), (6.30)

with the infinitesimal matrix-valued functions and the central extension term being
e1(p, v) = [pa, va] + k([9xpea, vol 4 + [p2, dxvil4) — k(@xv2Wip2 — V210 42)

— kP[22, va] — [Oep2, dxv2] + [p2. 92v2]).

e2(p, v) = [, vol + [m2, vi] + (m2Wive — voWin2)
+ K([MZ? aXUZ]Jr - [BXM29 v2]+)7

Cu, v) =4 / dx tr(d,pav) — 4> f dx tr(83pavy).

We see that the non-linear terms of thieéalgebra made the transformation parameters
g1 andeo depending on the Toda fields and their derivatives, although only through the
characteristic integratV; .

Similarly, introducing the quantity

Ws(t) = f dx tr[1(t, X)W1(t, x) + E2(1, X)Wa(t, X)], (6.31)
where the infinitesimal matrix-valued functioasande, satisfy the relations
0_81 = 0,81 — 0,81 = 0, 0_8p = 0,82 — 0,82 =0,
we come to the following expressions for the infinitesimal transformations
8: 'V = 817 — k00, rPr@=1r® _ Ly s, r®, (6.32)
8:I'? = 81I'@ —ka, rO D15, 1@ 4 Ly, 5,1@. (6.33)

The generator¥V: give rise to a closed algebra of the fotf30) that can be found from
the relationg6.14)—(6.16) Actually, we have

Wi, Wi} = Wa@n) + Ciz, ), (6.34)
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where

E1(f1, V) = —[f11, 9] — k([Bxita, V2l + + [, DxD1l4) + w(@xD2Vajiz — D2W1dji2)
+ k2 ([32 a2, V2] — [Bxfiz, dxv2] + [fi2, 9272]),
E2(j1, D) = —[j1, V2] — [z, 1] — (2W1b2 — 22 Whji2)
— k([ft2, 9 V2] — [Oxfi2, V2] 4),
C(in, v) = —dk f dx tr(dei1v1) + 4 f dx tr(8>fi272).
One can verify that the transformatiof®.28), (6.29), (6.32) and (6.33re symmetry

transformations for the Toda system under consideration. Putting 0 ande, = 0 we
obtain the infinitesimal version of the transformations described by the rel&tibh)

7. Non-abelian Liouville equation

In this section we consider an example of a non-abelian Toda system associated with the
Lie group Sp(R). It is convenient for our purposes to define this Lie group as a subgroup
of the Lie group Gk, (R) formed by all matriceg € GL,(R) which satisfy the relation

atKna =K,,

where the 2 x 2n matrix K,, has the form

0o J
K, =

with J,, being the skew-diagonal unitx n matrix. The superscript t as usually means the
transposition.

The Lie algebrap, (R) of the Lie group Sp(R) is formed by all real 2 x 2n matrices
x which satisfy the relation

xtKn + K,x=0.

Using for a general 2 x 2n matrix x block representatio(2.4), we see that the above
relation is equivalent to the equalities

T T T
X11 = —X22 X12 = X12, X21 = X21,
where for am x n matrixx we have denoted
T —1.t t
x =) xdy = Jux Jy.

Actually the matrixx" is the transpose of the matrix with respect to the main skew
diagonal.

Note that the matrix; defined by(2.5) belongs tosp, (R) and defines itZ-gradation.
Consider the Toda system associated with Zhigradation.
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One can verify that the Lie grou@g in the case under consideration is formed by the
block 2n x 2n matricesa of the form

(b 0
““\o on 1)

whereb is an arbitrary element of GI(R). Hence, the subgrou@g is isomorphic to the
Lie group GL,(R), and the mapping entering the general Todsquation (2.2)can be
parameterized as

r 0

where the mapping” takes values in G(R). The general form of the mappings and
a4 is again given by(2.6). Here the mappingd _ and A must satisfy the relation@.7)
and

AT =4, Al =4,
PuttingA_ = A, = I, we come to the following Toda equations
a(rton=—r'nt (7.2)

In the case ofi = 1 the mappingd" is just an ordinary function o/ taking values irfiR*.
If the functionI” is continuous, then it is either positive or negative. For a positive function
I’ one can writel” = expF andEq. (7.2)takes the form

3,.0_F = —exp(—2F),

that is the well-known Liouville equation. Therefore, it is natural to call the matrix differ-
entialequation (7.2)he non-abelian Liouville equation.
The system under consideration possesses a WZNW-type symmetry

I — A TA_, (7.3)
where the matrix-valued function$_ and A satisfy the conditions
3 A =0, 3-Ar=0 AT =aZt AT =4t

It is also conformally invariant. Here the action of the conformal transformations isn
defined as

Nz, 725 — [0-0 (@) @O Y2ret @), ¢ @)). (7.4)

The procedure described Bection 3 leads now to the following matrix characteristic
integrals

Wi=-3e(z_ - 3T),  Wo=-2Eo(x_+ 3T+ 2 3T, (7.5)

Wi = _%K(E+ - 21), Wo = —KZ(%a—(EJr + EI) + 2:42:51), (7.6)
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where

>=rY%.r Y =arr
Here we have

Wir = —-Wq, WI = —V_V]_, W;— = Wo, W;— = Wz.

Therefore, in this case there ame?dndependent characteristic integrals.
It is convenient to define the scalar productjr) (R) as

B(x, y) = 3tr(xy).

Taking into account the relatior{¢.10), (4.11), (7.5) and (7.&ye come to the following
expressions for the non-zero components of the conformally improved energy—momentum
tensor

1 1 }
T _ = Ztr[Wl2 —2Ws), T,, = Z(tr[le — 2Wo). (7.7)

Proceed now to the Hamiltonian formalism. It is clear that the matrices

. e/ 0
E‘l: ! . " i,j:].,...,n,
! INT
0 —(e)

form a basis of the Lie algebgg and one has
B(E], EL) = &ls].
Using the equality
el ®ei= ()T ® @), (7.8)

we see that the eleme€te go ® go is again given by the formulg.1). Let us use for the
mappingy the parameterizatiofy.1) and for the quantitieg and; the parameterizations

(7 o (T O
J= 0 —jT ’ J= O —:7T ’

where the functionsg7 and 7 take values i, (R). Now the relationg5.7)—(5.9)give
{j(x)®j(x/)} = _[Cn» I, ® J(x)] d3(x — x/) —2C, 8/()6 - -x/)s
(T)RI(X)} = [Cp, In @ T(0)] B(x — x') + 2C, 3 (x — x),
{T)RT()} =0,
and the relationg5.10) and (5.11jmply
{T)RJ)) = —(I'x) ® 1,)Cy d(x — x'),
(M)QI)} = —Co(Ix) ® 1) 3(x — X).
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The Hamiltonian counterparts of the characteristic integialend W, are
Wi=J-J", (7.9)
Wo==JJ" = k(@: T+ 9:J") +«*I I, (7.10)
To find the Poisson brackets for the characteristic integaland)V> we need to know the

Poisson brackets betweélix), J(x) andI"" (x), J' (x). They can be found in the following
way. Leto be a linear operator on MaiR) acting as

oa)=a'.
From(D.1) it follows that
(T0ORT T (x)} = (idyay,®) ® ) (TXQIT(X))),
hence, we have
(TOQT ()} =[Cp. In ® TT ()] 8(x — x) — 2, 8 (x — X,
where
Co = (idag, ®) ® 0)(Ca) = ¢] ® (€}
Note that the elemer, can also be defined as
Cn = (0 ® iduay, @) (Cn) = ()T ® ¢

Using this relation and the equalify.8), we obtain

(T DRI} = —[Cp, I, @ Tx)]8(x — x') — 26C, &' (x — x'),
(T DRI} =[Cp, I, @ TT(0)]8(x — x) — 26C,, &' (x — x').

In a similar way we come to the expressions

(MOQT (X)) = —(I'x) ® 1,)Cp 8(x — x'),
(M @I)}) = —Co(MM(x) ® I,) 3(x — x'),
(r'oeJ ()} = —Co(I'" (x) ® I,) 3(x — x).

It can be verified that the eleme@y, satisfies the relations

Chi(@a®b) =Cp(I, ®a'b) = Cy(bTa® 1),
(@®b)C, = (I, ®ba")C, = (@' @ I,)C,
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which are used in obtaining the Poisson bracket3farand,. These Poisson brackets
have the form

W1 ()@WL(X)} = —[Cy — Cuy I ® Wi(0)] 8(x — x') — 4k(C,, — C) &' (x — X'),
VLX) @Wa(x')} = —[Cp — Cp, I ® Wa(x)] 3(x — x')
— «[Cp = Co. Iy @ W1 (X)]4 & (x — X,
W (x)@Wa(x')} = (In @ Wa(x))(Cy + Cu) (In ® Wi(x)) 3(x — x)
— (I @ W1(0)(Cp + Cp) (I © Wa(x)) 3(x — x')
— 1k?[Cy + Cuy I ® 2W1(0)] B(x — X')
+ K[Cp + Cpy Iy @ W2(x) + W2 (¥))]1 8 (x = x')
— k (In @ W1(0))(Cpy + Co) (In ® W1(x)) ¥ (x — X))
— 1 (I @ Wi(x)(Cp + Co) (T @ Wi(x)) 8/ (x — x')
+ 36%[Cp + Co. Iy ® Wi(x) + W1 (X)) ¥ (x — X))
+ 43(Cy + Cp) 8 (x — X).
Note that the first two expressions above can be obtained from the relg@iépand (6.10)
replacingC, by C, — C,. One can also obtain the third expression fr(firi1)replacing

C, by C, + C,. The same procedure can be used to obtai_n the Poisson brackets for the
Hamiltonian counterparts of the characteristic integisand W», which are of the form

Wi=T-7, (7.11)
Wa = —T T4 k(@ T+ 0,7 ) + 12N, (7.12)
from the relation$6.14)—(6.16)

As follows from(7.7)the Hamiltonian counterparts of the non-vanishing components of
the energy—momentum tensor are

1 1,
T =St -2 T = Ztr[vvf —2W,). (7.13)

The quantities’(x) andV(x), defined by the relatio(6.23) again give two copies of the
Virasoro algebra:

V), VX)) = =) + V) 8 (x — 1) + 2kn 8" (x — x'), (7.14)
V), V) = V) + V) ¥ (x — x') — 3kn 8" (x — x'), (7.15)
{(V(x), V(x')} = 0. (7.16)

They generate the conformal transformati¢nsl). It can be shown that the characteristic
integralsWi (x) and Wy (x) have the conformal weight 1 with respectar) and V(x)
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respectively. The conformal weight of the characteristic integrédgx) and Wa(x) with
respect td/)(x) andV(x), respectively, is equal to 2.

We will not write explicit expressions for the infinitesimal symmetry transformations
generated by the characteristic integrals. They are similar to the transformations described
by relationg6.28), (6.29), (6.32) and (6.33)ote only that the characteristic integradg
andW; generate WZNW-type symmetry transformations giver{hg).

8. Conclusion

We found the classicdV-algebras and the corresponding infinitesimal symmetry trans-
formations for the simplest non-abelian Toda systems associated with the Lie groups
GL2,(R) and Sp(R). The block matrix structure of the systems under consideration re-
sults in the fact that the generators of fivealgebras appear as matrix-valued quantities.
Actually, it is this fact that gives us a possibility to write the defining relations in a compact
form.

To obtain theW-algebras for the case of the Toda systems related to the Lie grqR Sp
one could also use the fact that the symplectic group is a subgroup of the general linear
group, implementing the reduced phase space formalism. In such a case, one should work
with the corresponding Dirac bracket. However, the calculations one should perform along
that line of approach turn out to be more cumbersome than those we have done. So, the
more direct approach to the problem presented here is certainly preferable, at least from a
technical point of view.

It is worth to note that the generators of tHé-algebras obtained in the paper have
the conformal spin 1 or 2. Nevertheless, we gain non-linear defining relations. It is not
usual for the theory of¥-algebras, although it was observed in the theory aflgebras.

The latter are also extensions of the Virasoro algebra, but they allow for non-local terms
in expressions for the Poisson brackets of generg8ts41] It seems that they can be
obtained from théW-algebras for non-abelian Toda systems by imposing the constraints
saying that the generators of the WZNW-type symméwy,andVy in our case, are equal

to zero, but the explicit relationship requires further investigation. The main problem here

is to determine the structure of the reduced phase space in the case when the group formed
by the WZNW-type symmetry transformations is non-abelian.
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Appendix A. Coordinates and metrics conventions

Let M be a two-dimensional orientable Riemannian maniflavith metric tensor of
index 1. Arbitrary coordinates oM are denoted by and for the partial derivatives we use
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the notatiord; = d/3z'. Starting from the local representation fgr

n = nijdz’ ® dz/,
we define the quantitieg! by

n'*ng = o,

and denote déj|| simply by .
In the paper we deal with a flat two-dimensional maniféfdand use flat Minkowski
coordinateg?, z1, such that the metric tensor is

n=—-0d°®dz® + dz! ® dzt.
The light-front coordinates™ andz ™ are introduced by the relations

= %(ZO —zh), = %(ZO +2h. (A1)
The inverse transformation to the coordinat®sndz? is given by

L=z 427, =742 .
Using the light-front coordinates, we obtain for the metric tensor

n=-2d;” ®d:T —2dz" ®dz". (A.2)
The connection of partial derivatives is

d_ = dp — 01, 0y = do + 91, do = 33— +d4), 91 = 2(—0_ +d4).

Appendix B. Someinformation on matrix Lie groups

Let G be a real matrix Lie group or, in other words, a Lie subgroup of the Lie group
GLy (R). Denote byy* some local coordinates ai and byg the matrix-valued function
which transforms the coordinatgd(a) of the element € G into the element itself. The
left-invariant Maurer—Cartan formcan be written as

0 =g () dg(y).
where the matrix-valued functiogr ! is defined by the equality

g Mg = Iy.
It is easy to verify thab satisfies the relation

do+6A6=0. (B.1)
Using the basis of 1-formsy#t, one can write

0 =g 1 (»)du8(y) dy" = 0, (y) dy*, (B.2)
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wheregd, (y) are matrix-valued functions o . Recall that the Maurer—Cartan form is a

g-valued one-form and therefore the functiehgy) take values in the Lie algebgeof the
Lie groupG. The relation(B.1) is equivalent to the equalities

30 (y) — 08, (¥) + [0 (), Ou(y)] = 0. (B.3)
Choose some basjfsg,} of g and denote b}fgy the corresponding structure constants,
[eq, eg] = eyfo);ﬁ.

Expand the function8, (y) over the basige,},

0, (y) = eat (). (B.4)
This gives the following representation for the left-invariant Maurer—Cartan form:
0 = eqd, (y) dy". (B.5)

The relation(B.3) implies that

305 (y) — 5 () + f5,05 (6 () = 0. (B.6)
Denote byX/ (y) the functions satisfying the relation

Xy oy () = 8. (B.7)

Note that the functionX’, (y) are the components of the left-invariant vector fielis=
X4 ()3, onG. ltis not difficult to see thatB.6) implies

XEMIuXp(») — XgauXo () = X5 () fog (B.8)
that, in terms of the vector field$,, can be written as

[Xa, Xgl = Xy frg-
The right-invariant Maurer—Cartan form

0 =dg(»g
satisfies the relation

dd—6n6=0.
Introducing the local expansion

6 = el (y) dy", (B.9)
we obtain for the functionéﬁ (y) the following equalities:

3,05(y) — 0,0% (y) — £5,00 (00 () =0. (B.10)
The functionsX’, (y) defined by

XLy (y) =8 (B.11)
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are the components of the right-invariant vector fields= X4 (y)d,, onG. The equalities
(B.10)imply that

XEM3 X — XXy () = =X, () [y (B.12)
that is equivalent to

[Xa Xg] = X, £
From(B.2) and (B.4)we obtain

Xag(y) = g(yeq. (B.13)

This means that the vector field§, are generators of right shifts in the Lie grodp
Correspondingly, the equality

Xag(y) = eag(y) (B.14)

tells us that the vector fields, are generators of left shifts. Now, usi(®.13) and (B.14)
we see that

[Xe, Xplg(y) =0

that implies the equality
[Xo, Xg] = 0.

In terms of the components we present the above equality in the form
X508 Xp(») — X (08, Xy (») = 0.

Since we are working with a matrix Lie grou, the adjoint representation ¢f can be
defined by the relation

Ad(a)x = axa 1,
and the matrix of Ada) with respect to the basig,} of g is defined by the equality
Ad(a)e, = eg Adg(a).

Consider the action of the left-invariant vector fieX, on the matrix-valued function
gesg L. Using the equality

Xog M) = =g M) Xag(g )
and the relatioriB.13), we obtain

Xo(gepg () = gMeyg () [y
In terms of the matrix elements we obtain

Xa(Adj(g(y))) = Ad} (g()) fi-
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It is not difficult to show that

Xo(Adj(g™H () = — f1; Adj (e (1) (B.15)
Recall that for any: € G the operator A¢u) is an automorphism af:

Ad(a)[x, y] = [Ad(a)x, Ad(a)y].
In terms of components this equality takes the form

AdS (a) f5, = f5% AdG(@)AdS (a).

The right-invariant Maurer—Cartan form and the left-invariant one are connected by the
relation

0 =g(»0g ().
Using(B.5) and (B.9) we obtain the equality
AdE(g(») = 6, (N X (). (B.16)

Suppose that the Lie algebyés endowed with a non-degenerate symmetric invariant scalar
product. This means that there is given a bilinear mapgings x g — R, satisfying the
relations

B(x, y) = B(y, x), (B.17)
B([x, y], 2) = B(x, [y, 2], (B.18)

and the condition that iB(x, y) = 0 for all y € g thenx = 0.
From(B.17)it follows that for the quantities

cap = Bleq, ep) (B.19)
one has
Caf = CBa>

and the non-degeneracy of the scalar produirhplies that the matriXcqs| is invertible.
Using the relatior{B.18), one can show that the quantities

faﬂy = Coz8fgy

are totally antisymmetric with respect to the indiee$3 andy. It can also be shown that
in the case under consideration

1%, =0.

This equality implies that if the Lie grou@ is connected then it is unimodular.
Actually we assume in the paper that the scalar pro#ustAd-invariant. It means that
foranya € G and anyx, y € g one has

B(Ad(a)x, Ad(a)y) = B(x, y).
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In terms of components and matrix elements we have
Cys Adl(a) Ad%(a) = Cop.
Using the equalityB.16), we obtain
capls (MO () = capt (MOF (7). (B.20)

The last expressions establish the bi-invariant metric tensor @r-dreup manifold, related
to the local coordinateg”.
In construction of the action of the WZNW model one uses the three-form

1
© = 3,80, [6u(¥), 6p(MD dy" A dy” A dy”. (B.21)

Using (B.3), one can show that this form is closed, but, in general, it is not exact. Locally
for some two-form

1
Auw(y) dyt A dy”.

A= 5
We can write
® = dai. (B.22)

Taking into accoun(B.4), we have

1
O = 2 fapy O (NOL (IO () Ay A dy” Ay,
and the relatior{B.22)implies
Audup(3) + ddpu (9) + Dpdpn() = Fupy0% (MOE (1O (). (B.23)

Appendix C. Current algebra

To find the Poisson brackets fgy(x) write
{700 (%) + K1 (6(0)) 08P (x), 71y (x) 4 Khyo (E(x')) 987 (x')}
= _K[aukvp(f(x)) + Ao (§(x)) + 8p)wv(";:(x))]axsp(x) d(x —x').
Taking into account equalit{B.23), we obtain
{700 (%) 4 Keh i (6(x)) 02E” (), 1y (x) + kAo (E(X')) 357 (1)}
= —Kfapy0), (E(x))08 (E(x))0) (E(x)) 8,E” () 3(x — X').
Hence, using the equaliti¢B.8) we find
{=X5 ) (x) + K p(E(x)) 9xEP ()],
—X,vg(é(X’))[ﬂu(X’) + ko (5(x)0:£7 (xN)]}
= —XDEOD[7(0) + Khpo (E()):ET (0] £ D(x — x')
—1cCy50 (50 9:E7 (x) frg B(x — &), (C.1)
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It is easy to get convinced that
{= X5 EC)) [ (x) + KAy (E(x))3xE” ()], KCﬂaOf,(&(X’))axé"(x/)}
= kX4 (E0x))eps[ 0,05 (E(x)) — 356), (E(0))]0:E7 (1) B(x — x') — kcep 8 (x — X).
Using the relatior{B.6), we come to
{=XU G (x) + Kk p(§(x))9xE” ()], KC,eaOf,(&(X’))axE"(x/)}
= Kcygé’g(é(x))axé"(x) gﬁ d(x — x') — kepd'(x — x). (C.2)
Similarly we obtain
{kcayB) (£(x))0cE” (x), —X,”g(é:(x/))[ﬂu(X’) + ko (5(x')) 987 (x)]}
= Kc'y362(§‘(x))8xéa(x) D};ﬂ d(x — x') — kepd'(x — X). (C.3)

Finally, the equalitie$C.1)—(C.3)give the relation(5.2).
To find the expression for the Poisson bracketg,ofve write the equality

Ja = —(XG Oy + 10,0 ()0.:E°] + Kep, 07, (£)0,:E") AdS (g™ (C.4)

which follows from(B.16) and (B.20)Now using(C.1)—(C.3) and (B.15ye obtain(5.3).
In a similar way we arrive at the relati¢b.4).

Appendix D. Algebra-valued functions on a phase space

Let A; and A; be two unital algebras with the unitg; 1land 14,. The Poisson bracket
of an A1-valued functionF and anA»-valued functionG on a symplectic manifold/ is
defined in the following way. Choose some bagig} of A1 and some basisf;} of As.
Expand the functiong andG over the bases,

F = ¢, F%, G = f; G
Then the Poisson bracket 6fandG is defined as ad1 ® Ax-valued function
(FRG) = ey ® fi{F*, G'}.

The Poisson brack¢#®G} does not depend on the choice of the bgdsgpand{ f;}.
Introducing the linear mapping from A1 ® A2 to A2 ® A1 defined by the relation

Pla®b)=b®a,
we can reformulate the usual properties of the Poisson bracket as follows:

{FRG) = —P o {GQF), {FQGH} = {FQG}(14, ® H) + (14, ® G){FQH]},
{(FGRH)} = (F @ 14,){GQH} + {FQH}(G ® 14,).
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It is clear thatP is an isomorphism of the algebras ® A, and A2 ® A;. The Jacobi
identity for the usual Poisson bracket implies

P30 {FQIGQH}} 4 P30 {HR{FQGL} 4 P12o {GR{HQF}} = 0.

Here P13 is the linear mapping from1 ® A2 ® A3t0 Az ® A2 ® Ap permuting the first
and the third factors:

Pi3a®b®c)=c®Rb®a.

The linear mapping®2 and P»3 are defined analogously.
Let o1 be a linear mapping from an algebs to an algebraB;, andoz be a linear
mapping from an algebra, to an algebraB,. It can be easily shown that

{010 FQG} = (01 ® id,) {FQGY), {FQo2 0 G} = (ida, @ 02) {FQG)).
(D.1)

Appendix E. W-algebra calculations
To obtain the expression for the Poisson brackétafand W, we find first

(TP + TPV u)T@w))
= —[Cn, 1, ® TP TP )] 3(x — x) — 2%Cy (TP W) @ 1) § (x — ¥)
~2(TP () @ 1,)Cy 8 (x — X, (E.1)

(TP +TP0)® — k0, TV () — 8, TP (x)
= —[Cu, I ® —k(3: T P(x) — 9:T @ ()] 8(x — x)
—k[Cpy 1y @ (TP () = TP W] (x — x'). (E.2)

We also need the Poisson brackets76? with "?~1, To find them note that relatigi6.5)
implies

(TO@@rYu) = (U, @ I'(x))Cy 3(x — x)8'.
Writing now the relation
(TP0@rYeH O} = (1 ® I (0)Caln ® M 71a) 8 — 18"
+ (I, ® IO CIV ()@Y~ 1)} =0,
we obtain

(TORrY1(x)) = —C, (1, ® I (x)) 3(x — x)8".
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Using this equality, we come to

TV + TP @k?rd=1ar@ )
= —[Cn, I, @ K°TO 1)@ ()] 8(x — x). (E.3)

Collecting the equalitiee.1)—(E.3) we obtain the relatio(6.10)
The calculation of the Poisson bracket ¥k is more complicated. The main formulas

used here are

VAW ARIC-NAICOWACICHY
= —[Cp, (TP @) +T?@) @ TP )T @ 0] 8(x — %)
—2%Cp (TP © TP ()8 (x — x') = 2%C (TP () @ TP (') 8/ (x — x),
TP0ITP 0@ — k(@ TP ) — 8:.T@ )}
= k[Cn. I ® TP TP @0)]4:8' (x = x') = 2%Co (TP ) @ TP (1)) 8/ (x — x)
+ 2%C, (1, ® TP (1) 8" (x — x') — 2°Cr (I, ® TP (x)) 8" (x — x),
(TP@ITP W@ rvta)re )
=14(TP ) @ I 1) r@ ) c, 8(x — x')
—k?Cp(TP () @ TV 1) M@ (x)) 8(x — 1),
(k@ T V(@) — TP 1)@ — k0, TP ) — 3, TP ()
= k%[Cp, I ® (0:T P () + 8, T P ()] ¥ (x — x)
+6[Cn, Ly ® (TP ) + TP ()] (x — x') + 43C, 8" (x — X),
(k@ TP @) — TP )@k’ r V1) r@ ')

= 3[Cy, I @ TP TP ()] 8/ (x — x).
Using these equalities, after some rearrangement of terms we come to the (@4tign

The relationg6.14)—(6.16xan be proven in the same way.
Now we will show that

W, () @Wi(x')} = 0. (E.4)

Forr = s = 1 thisis a direct consequence of the equdlity}). For the cases= 1,5 = 2
andr = 2, s = 1 we come tqE.4)through the relations

1TV + J20)@k2r@yrO-1')) = o,
W2rY-1nromes?«) + 7% ) = o.
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Finally, using the equalities

(TP@ITP@e?r? ) rdta))

= (TPt @ r®w —r9 1w e rws? @) sx - x),
12rO 1o r@mer? w7 w))

= AP TV W e r®w -ro e s
(—r(0 T Y () — 8T @ ()PP () rO~1 ()
+ PO r@mece,J V) — 0,7 )
=23 ), rYmrY-1x) o rw

+ Y70 ® 8,5 (x)) 8(x — x),

@@ m) s — x),

and taking into account the identity
JN = rO=-170 0 4 o p0-1y 0

we see thafE.4)is valid for the case = s = 2 as well.
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