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Abstract

We construct the classicalW-algebras for some non-abelian Toda systems associated with the
Lie groups GL2n(R) and Spn(R). We start with the set of characteristic integrals and find the
Poisson brackets for the corresponding Hamiltonian counterparts. The convenient block matrix
representation for the Toda equations is used. The infinitesimal symmetry transformations generated
by the elements of theW-algebras are presented.
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1. Introduction

The Toda systems constitute a remarkable class of two-dimensional integrable systems.
According to the group-algebraic approach[1,2] such a system is specified by the choice
of a Lie groupG whose Lie algebrag is endowed with aZ-gradation. There exist so-called
higher grading[3,4] and multi-dimensional[5,6] generalizations of the Toda systems.

The ‘space–time’ for a Toda system is a two-dimensional manifold, and the ‘field space’
is the Lie groupG0 corresponding to the Lie subalgebrag0 of g corresponding to zero value
of the grading index. If the groupG0 is abelian the corresponding Toda system is said to be
abelian, otherwise one has a non-abelian Toda system. There is a lot of papers devoted to
abelian Toda systems, while non-abelian Toda systems are not very well studied yet. This
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is connected to the fact that until recently there was no convenient representation for such
systems. It was shown in paper[7] that some class of non-abelian Toda systems can be
represented in a simple block matrix form. Later it was proven that it is the case for all Toda
systems associated with classical semisimple Lie groups[8]. This led to the renewal of the
interest to this class of integrable systems; see, for example, papers[9–12].

In the present paper we investigate the symmetries of the simplest non-abelian Toda sys-
tems associated with finite dimensional Lie groups GL2n(R) and Spn(R). Actually for the
systems under consideration there are an evident symmetry resembling the symmetry of
a Wess–Zumino–Novikov–Witten (WZNW) model[13,14] and the conformal symmetry.
These symmetries do not exhaust all symmetries of the systems. More symmetries can be
found using the so-called characteristic integrals whose existence is related to the integra-
bility of Toda systems. These integrals give an infinite set of the densities of conserved
charges. The Hamiltonian counterparts of these conserved charges generate the required
symmetry transformations.

Thus, our strategy is as follows. We find the characteristic integrals for our systems
(Section 3: Eqs. (3.8) and (3.11); Section 7: Eqs. (7.5) and (7.6)). Then we proceed to the
Hamiltonian formalism (throughoutSections 4 and 5) and find the Hamiltonian counterparts
of the characteristic integrals (Section 6: Eqs. (6.7), (6.8), (6.12) and (6.13); Section 7:
Eqs. (7.9)–(7.12)) and conserved charges (Section 6: Eqs. (6.27) and (6.31)). This allows
us to find the form of infinitesimal symmetry transformations in the Hamiltonian formalism
and write down their Lagrangian version (Section 6: Eqs. (6.28), (6.29), (6.32) and (6.33)).

We show also that the set of characteristic integrals is closed with respect to the Poisson
bracket and form an object usually called a classicalW-algebra (Section 6: Eqs. (6.9)–(6.11),
(6.14)–(6.16), (6.30) and (6.34)). The distinctive features of such algebras is that their defin-
ing relations are essentially non-linear and that they contain Virasoro algebras corresponding
to the conformal invariance. The systematic study ofW-algebras in the framework of gen-
eral quantum conformal field theory was initiated by Zamolodchikov[15]. For a detailed
review of the subject we refer the reader to paper[16].

Although our paper contains original results, in some parts it has character of a review.
It is worth to note here that majority of the results onW-algebras for Toda systems was
obtained by the method of Hamiltonian reduction that is based on the fact that Toda systems
can be obtained if one starts with a WZNW model based on a Lie groupG and then imposes
relevant constraints on the conserved currents forming with respect to the Poisson bracket
two copies of loop algebras associated with the Lie algebrag [17–19]. Here the Toda ‘field
space’ arises as a factor in the generalized Gauss decomposition of the Lie groupG, which
is valid only for a dense subset ofG. This results in that the true reduced system is different
from a Toda system; see, in this respect, papers[20–26]. Such our conclusion is justified
at least by the fact that the Toda systems have singular solutions corresponding to some
non-singular initial conditions, and that is impossible for a system being a reduction of
a WZNW model which does not have such solutions. Thus, the results on Toda systems
obtained with the help of the method of Hamiltonian reduction require verification.

It seems to us that the direct method used in our paper is more appropriate to the problem
under consideration than the method of Hamiltonian reduction. In particular, it allows to
identify the generators of the Virasoro algebras describing the conformal properties of the
model with the Hamiltonian counterparts of the components of the conformally improved
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energy–momentum tensor which is constructed by a standard procedure (seeSection 6:
Eqs. (6.23)–(6.26); Section 7: Eqs. (7.13)–(7.16)).

2. Toda systems

In accordance with the group-algebraic approach[1,2] the construction of equations
describing a Toda system looks as follows. LetG be a real or complex Lie group whose
Lie algebrag is endowed with aZ-gradation,

g = ⊕
m∈Z
gm, [gm, gn] ⊂ gm+n.

Recall that for a givenZ-gradation ofg the subspaceg0 is a subalgebra ofg. The subspaces

g<0 = ⊕
m<0
gm, g>0 = ⊕

m>0
gm

are also subalgebras ofg. Denote byG0, G<0 andG>0 the connected Lie subgroups ofG
corresponding to the subalgebrasg0, andg<0 andg>0, respectively.

LetM be a real two-dimensional manifold. Introduce local coordinates onM and denote
them byz− andz+. One can also consider the case whenM is a one-dimensional complex
manifold. In this casez− is a complex coordinate onM andz+ is the complex conjugate of
z−. Leta− anda+ be some fixed mappings fromM to g−1 andg+1, respectively, satisfying
the relations

∂+a− = 0, ∂−a+ = 0. (2.1)

Here and below we denote the partial derivatives overz− andz+ by ∂− and∂+. Actually we
assume that the subspacesg−1 andg+1 are non-trivial. Generally, ifl is a positive integer
such that the subspacesgm are trivial for−l < m < 0 and 0< m < l, one definesa− and
a+ as mappings fromM to g−l andg+l, respectively. Restrict ourselves to the case when
G is a matrix Lie group. In other words, assume that for some positive integerN it is a
Lie subgroup of the Lie group GLN(R) or of the Lie group GLN(C). More general case is
discussed in paper[27]. In the case under consideration the equations describing the Toda
system are matrix partial differential equations of the form

∂+(γ−1∂−γ) = [a−, γ−1a+γ], (2.2)

whereγ is a mapping fromM toG0. Note thatEq. (2.2)can also be written as

∂−(∂+γγ−1) = [γa−γ−1, a+]. (2.3)

Parametrizing the groupG0 by a set of independent parameters, or, in other words, intro-
ducing some coordinates onG0, we can rewrite the Toda equations as a system of equations
for ordinary functions, which we call Toda fields.

If the Lie groupG0 is abelian we say that we deal with an abelian Toda system, otherwise
we call the system a non-abelian one. The complete classification of the Toda systems
associated with the classical Lie groups is given in paper[8].
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There is a constructive procedure of obtaining the general solution to Toda equations
[2,5,6]. It is based on the use of the Gauss decomposition related to theZ-gradation under
consideration. Here the Gauss decomposition is the representation of an element of the Lie
groupG as a product of elements of the subgroupsG<0,G>0 andG0 taken in an appropriate
order. Another approach is based on the theory of representations of Lie groups[1,2].

In this paper we consider the simplest examples of non-abelian Toda equations based on
the Lie groups GL2n(R) and Spn(R) [6,28].

We start with the Lie groupG = GL2n(R). The case of the Lie group Spn(R) will be
considered inSection 7. The Lie algebrag = gl2n(R) of GL2n(R) is formed by all real
2n × 2n matrices. Below we represent an arbitrary 2n × 2n matrix x in the block matrix
form

x =
(
x11 x12

x21 x22

)
, (2.4)

wherexrs, r, s = 1,2, aren× n matrices.
Recall that an elementq ∈ g is said to be the grading operator generating theZ-gradation

under consideration if

gm = {x ∈ g|[q, x] = mx}.
In particular, anyZ-gradation of a finite dimensional complex semisimple Lie algebra is
generated by the corresponding grading operator.

Denote byIn the unitn× n matrix. It is easy to show that the element

q = 1

2

(
In 0

0 −In

)
(2.5)

generates aZ-gradation ofgl2n(R). Here the subspacesg−1 andg+1 are the sets formed
by all block strictly lower triangular and strictly upper triangular matrices ofgl2n(R),
respectively, and the subspaceg0 is the set of all block diagonal matrices ofgl2n(R). All
other grading subspaces are trivial, and we haveg<0 = g−1, g>0 = g+1.

Hence, the general form of the mappingsa− anda+ is

a− =
(

0 0

A− 0

)
, a+ =

(
0 A+
0 0

)
, (2.6)

whereA− andA+ are arbitraryn×nmatrix-valued functions onM satisfying the condition

∂+A− = 0, ∂−A+ = 0. (2.7)

In this paper we restrict ourselves to the caseA− = In andA+ = In.
It is not difficult to describe the corresponding subgroupsG<0, G>0 andG0 of the Lie

group GL2n(R). The subgroupsG<0 andG>0 consist of all block lower triangular and
upper triangular matrices of GL2n(R), respectively, with unit matrices on the diagonal. The
subgroupG0 is formed by all block diagonal matrices of GL2n(R).

Parameterize the mappingγ as

γ =
(
Γ (1) 0

0 Γ (2)

)
, (2.8)
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whereΓ (1) andΓ (2) are mappings fromM to the Lie group GLn(R). With this parameter-
ization we write the Toda equations in the form

∂+(Γ (1)−1∂−Γ (1)) = −Γ (1)−1Γ (2), ∂+(Γ (2)−1∂−Γ (2)) = Γ (1)−1Γ (2), (2.9)

or in the form

∂−(∂+Γ (1)Γ (1)−1) = −Γ (2)Γ (1)−1, ∂−(∂+Γ (2)Γ (2)−1) = Γ (2)Γ (1)−1. (2.10)

The exact general solution to these equations was obtained in paper[6].
One can get convinced that the transformations

Γ (1) → Λ+Γ (1)Λ−, Γ (2) → Λ+Γ (2)Λ−, (2.11)

whereΛ− andΛ+ are mappings fromM to GLn(R) satisfying the conditions

∂+Λ− = 0, ∂−Λ+ = 0

are symmetry transformations for the system under consideration. This symmetry, by an
evident reason, can be called a WZNW-type symmetry.

The system possesses also the conformal symmetry. Here the conformal transformations

z− → ζ−(z−), z+ → ζ+(z+) (2.12)

act on the space of solutions ofEqs. (2.9), or (2.10), in the following way[8]:

Γ (1)(z−, z+) → [∂−ζ−(z−)∂+ζ+(z+)]−1/2Γ (1)(ζ+(z+), ζ−(z−)), (2.13)

Γ (2)(z−, z+) → [∂−ζ−(z−)∂+ζ+(z+)]1/2Γ (2)(ζ+(z+), ζ−(z−)). (2.14)

The WZNW-type symmetry and the conformal symmetry do not exhaust all symmetries of
the system. To find additional symmetry transformations we can use the following proce-
dure.

First we find conserved charges. In the case under consideration we have an infinite set
of conserved charges provided by the so-called characteristic integrals. In the Hamiltonian
formalism the conserved charges generate symmetry transformations. So, we construct the
Lagrangian formulation for our system and then proceed to the corresponding Hamilto-
nian description. After that we consider the symmetry transformations generated by the
Hamiltonian counterparts of the conserved charges associated with the characteristic inte-
grals, and finally obtain their Lagrangian version. This allows us, in particular, to obtain
the WZNW-type symmetry transformations and the conformal transformations discussed
above.

3. Characteristic integrals

A characteristic integral of a Toda system is, by definition, either a differential polynomial
W of the Toda fields satisfying the relation

∂+W = 0, (3.1)
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or a differential polynomialW̄ of the Toda fields which satisfy the relation

∂−W̄ = 0. (3.2)

By a differential polynomial we mean a polynomial function of the fields and their deriva-
tives.

Let us treat the manifoldM as a flat Riemannian manifold with the coordinatesz− and
z+ being light-front coordinates and the metric tensorη having the form(A.2). The usual
flat coordinatesz0 andz1 are related to the light-front coordinatesz− andz+ by the relation
(A.1). Using these coordinates we write the equality(3.1)as

∂0W + ∂1W = 0,

where∂0 = ∂/∂z0 and∂1 = ∂/∂z1. Hence, the functionW is a density of a conserved
charge. Moreover, multiplyingW by a function which depends only onz− we again obtain
a characteristic integral. Therefore, a characteristic integral generates an infinite set of
densities of conserved charges. Similarly, multiplying a characteristic integral satisfying
the relation(3.2) by functions depending only onz+ we again obtain an infinite set of
densities of conserved charges.

It is clear that any differential polynomial of characteristic integrals is also a character-
istic integral. Moreover, the Poisson bracket of the Hamiltonian counterparts of any two
characteristic integrals is again a characteristic integral. Therefore, a necessary step in in-
vestigation of characteristic integrals is to show that they form a closed set with respect to
the Poisson bracket, or, in other words, that they form an object called aW-algebra; see,
for a review,[16].

There are two main methods for obtaining characteristic integrals for Toda systems. The
first one is based on the construction of a generating pseudo-differential operator; see, for
example, papers[17,29–31]. The second method is based on the usage of the so-called
Drinfeld–Sokolov gauge; see, for example, papers[17–19,32]. In the present paper we use
the latter method.

It is well known that Todaequation (2.2)can be obtained as the zero curvature condition
for some connection on the trivial principal fiber bundleM×G → M [1,2]. We identify the
connection under consideration with ag-valued one-formω onM. Using the basis formed
by the 1-forms dz− and dz+, we write

ω = ω− dz− + ω+ dz+,

where the componentsω− andω+ are g-valued functions onM. The curvature of the
connectionω is zero if and only if

dω + ω ∧ ω = 0, (3.3)

or, in terms of the components,

∂−ω+ − ∂+ω− + [ω−, ω+] = 0. (3.4)

If we consider the componentsω− andω+ of the form

ω− = a− + γ−1∂−γ, ω+ = γ−1a+γ, (3.5)

then the zero curvature condition(3.4) is equivalent to the Todaequation (2.2).
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Recall that the zero curvature condition is gauge invariant. It means that if a connection
ω satisfies the relation(3.3), then for any mappingψ : M → G the gauge transformed
connection

ωψ = ψ−1ωψ + ψ−1 dψ

satisfies the relation(3.3)as well. In terms of the components one has

ω
ψ
− = ψ−1ω−ψ + ψ−1∂−ψ, ω

ψ
+ = ψ−1ω+ψ + ψ−1∂+ψ.

In particular, if we consider the connection with the components given by(3.5)and choose
ψ = γ−1 we will come to the connection, which we also denote byω, with the components

ω− = γa−γ−1, ω+ = −∂+γγ−1 + a+. (3.6)

And the zero curvature condition(3.4)gives the Toda equations written in form(2.3).
Let us return to our specific example of Toda equations. Write the componentsω− and

ω+ defined by(3.5) in the block matrix form

ω− =
(
Σ
(1)
− 0

In Σ
(2)
−

)
, ω+ =

(
0 Γ (1)−1Γ (2)

0 0

)
,

where we denoted

Σ
(1)
− = Γ (1)−1∂−Γ (1), Σ

(2)
− = Γ (2)−1∂−Γ (2). (3.7)

Now consider the gauge transformation generated by a mappingψ : M → G>0. The
general form of such a mapping is

ψ =
(
In χ

0 In

)
.

For the componentωψ− we obtain the expression

ω
ψ
− =

(
Σ
(1)
− − χ (Σ

(1)
− − χ)χ− χΣ

(2)
− + ∂−χ

In Σ
(2)
− + χ

)
.

The Drinfeld–Sokolov gauge[17–19,32]in our case is fixed by the requirement

(ω
ψ
−)11 = (ω

ψ
−)22.

It is clear that this requirement gives

χ = 1
2(Σ

(1)
− −Σ

(2)
− ),

and we obtain

ω
ψ
− =




− 1

2κ
W1 − 1

κ2
W2 + 1

4κ2
W2

1

In − 1

2κ
W1


 ,
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where

W1 = −κ(Σ(1)
− +Σ

(2)
− ), W2 = −κ2(1

2(∂−Σ
(1)
− − ∂−Σ(2)

− )−Σ
(1)
− Σ

(2)
− ), (3.8)

andκ is a constant. We introduced the constantκ in the definition of the quantitiesW1 and
W2 for future convenience. Actually we will identify it with the constant entering the action
of the Toda theory.

For the componentωψ+ we have the expression

ω
ψ
+ =

(
0 Γ (1)−1Γ (2) + 1

2(∂+Σ
(1)
− − ∂+Σ(2)

− )

0 0

)
.

Therefore, ifΓ (1) andΓ (2) satisfy the Todaequations (2.9)thenωψ+ = 0, and the zero
curvature condition gives

∂+ω
ψ
− = 0.

This equality implies that

∂+W1 = 0, ∂+W2 = 0. (3.9)

Thus, the quantitiesW1 andW2 are matrix characteristic integrals of the Toda system under
consideration.

As we have already noted, any differential polynomial of characteristic integrals is a
characteristic integral. Therefore, they form a differential algebra. The generators of this
algebra, the matrix elements ofW1 andW2 in our case, can be chosen in different ways.
Our choice is inspired by an intention to get simple expressions for Poisson brackets.

One can also start with the connection components of the form(3.6). Performing the
gauge transformation withψ : M → G<0,

ψ =
(

In 0

1
2(Σ̄

(1)
+ − Σ̄

(2)
+ ) In

)
,

where

Σ̄
(1)
+ = ∂+Γ (1)Γ (1)−1, Σ̄

(2)
+ = ∂+Γ (2)Γ (2)−1, (3.10)

we obtain

ω
ψ
+ =




1

2κ
W̄1 In

− 1

κ2
W̄2 + 1

4κ2
W̄2

1
1

2κ
W̄1


 ,

where

W̄1 = −κ(Σ̄(1)
+ + Σ̄

(2)
+ ), W̄2 = −κ2(1

2(∂+Σ̄
(1)
+ − ∂+Σ̄(2)

+ )− Σ̄
(2)
+ Σ̄

(1)
+ ).

(3.11)
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For the componentωψ− one has

ω
ψ
− =

(
0 0

Γ (2)Γ (1)−1 + 1
2(∂−Σ̄

(1)
+ − ∂−Σ̄(2)

+ ) 0

)
,

and the Todaequations (2.10)giveωψ− = 0. The zero curvature condition implies that

∂−W̄1 = 0, ∂−W̄2 = 0, (3.12)

and we end up with another set of characteristic integrals.

4. Lagrangian formalism for Toda systems

To write the action describing a Toda system we must be able to integrate over the manifold
M, in other words, we have to define a volume form. To this end, as in the previous section,
we treat the manifoldM as a flat Riemannian manifold with a metric tensorη. The next
ingredient needed is a non-degenerate symmetric invariant scalar product in the Lie algebra
g. We assume thatg is endowed with such a scalar product and denote it byB.

The action functionalS[γ] of a Toda system is the sum of three terms:

S[γ] = SC[γ] + SWZ[γ] + ST[γ].

Let us discuss them in order.
The first termSC[γ] is the action functional of the principal chiral field model. Using

some arbitrary coordinates onM, denoted byzi, we write

SC[γ] = −κ

2

∫
M

ηijB(γ−1∂iγ, γ
−1∂jγ)

√
|η| d2z,

whereκ is a constant. Note that ifγ is a mapping fromM toG0, thenγ−1∂iγ is a mapping
fromM to g0.

The second term is the so-called Wess–Zumino term which is constructed as follows.
Suppose that the manifoldM is the boundary of the three-dimensional manifoldM̃, M =
∂M̃. Let γ̃ be an extension of the mappingγ fromM to M̃. The Wess–Zumino term is

SWZ[γ] = − κ

3!

∫
M̃

εIJKB(γ̃−1∂I γ̃, [γ̃−1∂J γ̃, γ̃
−1∂Kγ̃])d3z̃,

wherez̃I are some coordinates oñM andεIJK is the absolutely skew-symmetric symbol. It
can be shown that the variations of the Wess–Zumino term are determined by the mapping
γ only. Hence the corresponding equations of motion govern the mappingγ, leaving the
extensionγ̃ arbitrary. It is an example of the so-called multi-valued functional, and so, we
write justSWZ[γ] instead ofSWZ[γ̃].

The last term is the Toda term, which has the form

ST[γ] = κ

∫
M

B(a−, γ−1a+γ)
√

|η| d2z.
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Herea− anda+ are fixed mappings fromM to g−1 andg+1, respectively, satisfying the
conditions

(
√

|η|ηij + εij)∂ja+ = 0, (
√

|η|ηij − εij)∂ja− = 0. (4.1)

The action functional of the WZNW model is the sum of the functionalsSC[γ] andSWZ[γ].
The functionalST does not contain derivatives ofγ. Therefore, the construction of the
Hamiltonian formalism for a Toda system is a trivial modification of that for the WZNW
model.

Let us show that the actionS[γ] does really give the Toda equations. One finds consec-
utively

�SC[γ] = κ

∫
M

B

(
γ−1�γ,

1√|η|∂i(
√

|η|ηijγ−1∂jγ)

)√
|η| d2z, (4.2)

�SWZ[γ] = κ

∫
M

B

(
γ−1�γ,

1√|η|ε
ij∂i(γ

−1∂jγ)

)√
|η| d2z, (4.3)

�ST[γ] = κ

∫
M

B(γ−1�γ, [a−, γ−1a+γ])
√

|η| d2z. (4.4)

To obtain from these relations the equations of motion one should use the fact that the
restriction of the scalar productB to the Lie subalgebrag0 is non-degenerate. To show this
let us take two elements,xm andxn, belonging togm andgn respectively. From(B.18) it
follows that

B([xm, q], xn) = B(xm, [q, xn]),

and one obtains

(m+ n)B(xm, xn) = 0.

Therefore,B(xm, xn) = 0 if n + m �= 0. This implies that the restriction of the scalar
productB to g0 is non-degenerate indeed. Note also that

B|g<0 = 0, B|g>0 = 0,

and thatB gives a non-degenerate pairing of the nilpotent subalgebrasg<0 andg>0.
Since the scalar productB|g0 is non-degenerate, the relations(4.2)–(4.4)give rise to the

following equations of motion

1√|η|∂i(
√

|η|ηijγ−1∂jγ + εijγ−1∂jγ)+ [a−, γ−1a+γ] = 0. (4.5)

Using light-front coordinates, one sees that these equations coincide with the Todaequation (2.2).
Here the conditions(4.1)coincide with the conditions(2.1). RewritingEq. (4.5)as

1√|η|∂i(
√

|η|ηij∂jγγ
−1 − εij∂jγγ

−1)+ [γa−γ−1, a+] = 0,

and using light-front coordinates, we come toEq. (2.3).
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It is convenient now to introduce some coordinatesyµ in G0 and work in terms of fields
ξµ defined as

ξµ = yµ ◦ γ = γ∗yµ.

Let g be the matrix-valued function which transforms the coordinatesyµ(a) of the element
a ∈ G0 into the elementa itself, then we can write

γ = g(ξ).

Therefore, one has

γ−1∂iγ = eαθ
α
µ(ξ)∂iξ

µ,

where{eα} is a basis ofg0, and the functionsθαµ are defined inAppendix B. Using this
relation, we obtain for the density of the Lagrangian of the principal chiral field model the
expression

LC = −1
2κ
√

|η|cαβθαµ(ξ)θβν (ξ)ηij∂iξ
µ∂jξ

ν,

where the quantitiescαβ are given by(B.19). Introducing the notation

hµν(y) = cαβθ
α
µ(y)θ

β
ν (y), (4.6)

we write the density of the LagrangianLC as

LC = −1
2κ
√

|η|hµν(ξ)ηij∂iξ
µ∂jξ

ν.

Note thathµν(y) are the components of the bi-invariant metric tensor on the Lie groupG0.
The Wess–Zumino term can be written as

SWZ[γ] = −κ
∫
M̃

γ̃∗Θ,

where the three-formΘ is given by the relation(B.21). Using the local representation(B.22),
we obtain

SWZ[γ] = −κ
∫
M

γ∗λ

that gives

LWZ = −1
2κλµν(ξ)ε

ij∂iξ
µ∂jξ

ν.

Finally, for the contribution to the density of the Lagrangian of the Toda system, which is
due to the termST[γ], we have

LT = κ
√

|η|B(a−, g−1(ξ)a+g(ξ)) = −κ
√

|η|V(ξ).
Collecting all terms, we come to the following expression for the density of the Lagrangian
of a Toda system

L = −1
2κ
√

|η|hµν(ξ)ηij∂iξ
µ∂jξ

ν − 1
2κλµν(ξ)ε

ij∂iξ
µ∂jξ

ν − κ
√

|η|V(ξ). (4.7)

Let us restrict ourselves to the case when the mappingsa− anda+ are constant. In this case
the Toda system under consideration is conformally invariant, and it is possible to define
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the energy–momentum tensor for it being symmetric and traceless. Recall that there are two
standard methods to define the energy–momentum tensor. The first method is the variation
of the action over the components of the metric tensor that gives the so-called symmetric
energy–momentum tensor. Note that in our case the Wess–Zumino term does not depend
on the metric, therefore it does not give a contribution to the symmetric energy–momentum
tensor. It may seem to be strange at the first glance. To demonstrate that this is, however,
the case, we start with the canonical energy–momentum tensorT ij which is defined by

√
|η|T ij = − ∂L

∂(∂iξµ)
∂jξ

µ + δijL.

It is convenient to write the expression for the components of the energy–momentum tensor
with upper indices. We have√

|η|T ij = κ
√

|η|hµν(ξ)ηikηjl∂kξ
µ∂lξ

ν − κλµν(ξ)ε
ikηjl∂kξ

µ∂lξ
ν

+ ηij(−1
2κ
√

|η|hµν(ξ)ηkl∂kξ
µ∂lξ

ν − 1
2κλµν(ξ)ε

kl∂kξ
µ∂lξ

ν − κ
√

|η|V(ξ)).
Consider the terms containingλµν(ξ). They can be written as

−1
2κ(ε

ikηlj + εliηkj + εklηij)λµν(ξ)∂kξ
µ∂lξ

ν.

The sumεikηlj + εliηkj + εklηij is totally antisymmetric with respect to the indicesi, k and
l. Since we work in a two-dimensional space–time, this sum is equal to zero, and we can
write

T ij = κηikηjlhµν(ξ)∂kξ
µ∂lξ

ν − 1
2κη

ijηklhµν(ξ)∂kξ
µ∂lξ

ν − κηµνV(ξ).

Thus, the canonical energy–momentum tensor of a Toda system has no terms arising from the
Wess–Zumino term. It can be shown that it coincides with the symmetric energy–momentum
tensor. For the symmetric energy–momentum tensor one has

T
ij
;i = 0,

where the usual notation for the covariant derivatives with respect to the metric tensorη is
used. In terms of the mappingγ we obtain

T ij = κηikηjlB(γ−1∂kγ, γ
−1∂lγ)− 1

2κη
ijηklB(γ−1∂kγ, γ

−1∂lγ)

+ κηijB(a−, γ−1a+γ).

The trace of the obtained energy–momentum tensor is different from zero, namely

T ii = 2κB(a−, γ−1a+γ).

Let us construct the so-called conformally improved traceless energy–momentum tensor.
To this end first note that since the mappinga− takes values ing−1, one can write

B(a−, γ−1a+γ) = −B([q, a−], γ−1a+γ) = −B(q, [a−, γ−1a+γ]).
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Taking into account the equations of motion(4.5), we see that

B(a−, γ−1a+γ) = 1√|η|B(q, ∂i(
√

|η|ηijγ−1∂jγ + εijγ−1∂jγ)),

with account of the equality

[q, γ] = 0

can be written as

B(a−, γ−1a+γ) = 1√|η|∂iB(q,
√

|η|ηijγ−1∂jγ),

Thus the trace of the energy–momentum tensor can be represented in the form

T ii = 2Ri;i,

where

Ri = κB(q, ηijγ−1∂jγ) = κB(q, ηij∂jγγ
−1).

Now let us use the well-known fact that the energy–momentum tensor is defined ambigu-
ously. In particular, one can use instead of the tensorT ij the tensor

T ′ij = T ij + S
ikj
;k ,

where the componentsSikj satisfy the relation

Sikj = −Skij.

It is clear that one has

T
′ij
;i = 0. (4.8)

One can easily check that with the choice

Sikj = −2ηijRk + 2ηkjRi

we obtain a traceless and symmetric tensorT ′ij. This is the conformally improved energy–
momentum tensor for the Toda system.

Using coordinates for which the components of the metric tensor are constant, we come
to the expression

T ′
ij = κB(γ−1∂iγ, γ

−1∂jγ)− 1
2κηijη

klB(γ−1∂kγ, γ
−1∂lγ)

+ 2κB(q, ∂i(γ
−1∂jγ))− κηijη

klB(q, ∂k(γ
−1∂lγ)).

Since, the natural coordinates for a two-dimensional conformally invariant system are
light-front coordinates let us write the components of the conformally improved energy–
momentum tensor using such coordinates. First of all recall that since the conformally
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improved energy–momentum tensor is symmetric and traceless then

T ′
−+ = 0, T ′

+− = 0.

Therefore, the relations(4.8) take the form

∂+T ′
−− = 0, ∂−T ′

++ = 0. (4.9)

It is convenient to choose the following explicit expressions for the non-zero components:

T ′
−− = κB(γ−1∂−γ, γ−1∂−γ)+ 2κB(q, ∂−(γ−1∂−γ)), (4.10)

T ′
++ = κB(∂+γγ−1, ∂+γγ−1)+ 2κB(q, ∂+(∂+γγ−1)). (4.11)

For the Toda system discussed inSection 2we define the scalar productB by the relation

B(x, y) = tr(xy). (4.12)

It is clear that this scalar product is symmetric, non-degenerate and Ad-invariant. Taking
into account the relations(2.5), (3.7) and (3.10), we obtain

T ′
−− = κ tr[Σ(1)2

− +Σ
(2)2
− + ∂−(Σ(1)

− −Σ
(2)
− )],

T ′
++ = κ tr[Σ̄(1)2

+ + Σ̄
(2)2
+ + ∂+(Σ̄(1)

+ − Σ̄
(2)
+ )].

The definitions(3.8) and (3.11)allow us to write

T ′
−− = 1

κ
tr[W2

1 − 2W2], T ′
++ = 1

κ
tr[W̄2

1 − 2W̄2]. (4.13)

Here the equalities(4.9)can be considered as consequences of the relations(3.9)and(3.12).

5. Hamiltonian formalism

In this section we follow mainly the paper by Bowcock[33] where the Hamiltonian
formulation of the WZNW model and its gauged version was investigated. The approach
used in[33] is based on usage of a local representation of the closed three-form entering
the definition of the action, as an exact form. Actually we used this trick in the previous
section to construct the density of the Lagrangian. The validity of such a local construction is
justified by the fact that the final Hamiltonian equations do really imply the initial Lagrangian
equations.

Consider again a general Toda system. Assume thatt = z0 andx = z1 are flat Minkowski
coordinates onM. In these coordinates one has

‖ηij‖ =
(

−1 0

0 1

)
.

The expression for the density of the Lagrangian(4.7) takes the form

L = 1
2κhµν(ξ)∂tξ

µ∂tξ
ν − 1

2κhµν(ξ)∂xξ
µ∂xξ

ν − κλµν(ξ)∂tξ
µ∂xξ

ν − κV(ξ).
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Here and below we denote∂t = ∂/∂t and∂x = ∂/∂x. The density of the energy functional
is

E = ∂L

∂(∂tξµ)
∂tξ

µ − L = κ

2
hµν(ξ)∂tξ

µ∂tξ
ν + κ

2
hµν(ξ)∂xξ

µ∂xξ
ν + κV(ξ). (5.1)

For the generalized momenta one has the expression

πµ = ∂L

∂(∂tξµ)
= κhµν(ξ)∂tξ

ν − κλµν(ξ)∂xξ
ν.

We can write the inverse relation which expresses the generalized velocities∂tξ
µ via the

generalized momenta:

∂tξ
µ = 1

κ
hµν(ξ)[πν + κλνρ(ξ)∂xξ

ρ],

where

hµρ(y)hρν(y) = δµν .

Substituting the above expression for∂tξ
µ into the relation(5.1), we obtain for the density

of the Hamiltonian the following expression:

H= 1

2κ
hµν(ξ)[πµ + κλµρ(ξ)∂xξ

ρ][πν + κλνσ(ξ)∂xξ
σ ]

+ κ

2
hµν(ξ)∂xξ

µ∂xξ
ν + κV(ξ).

Recall that the non-vanishing Poisson brackets for the fieldsξµ and the generalized momenta
πµ have the form

{ξµ(x), πν(x′)} = δµν �(x− x′).

Using this relation, one can write the Hamiltonian equations of motion and prove that they
are equivalent to the Lagrangian equations of motion.

The phase space of the system is described by the fieldsξµ and the generalized momenta
πµ. They depend on the choice of the coordinatesyµ in G0. To describe the phase space in
terms independent of this choice, consider first the quantities

jα = −Xµ
α (ξ)[πµ + κλµρ(ξ)∂xξ

ρ] + κcαγθ
γ
ρ(ξ)∂xξ

ρ,

where the functionsXµ
α (y) are defined by(B.7). As is shown inAppendix C, the Poisson

brackets for the quantitiesjα(x) are

{jα(x), jβ(x′)} = jγ(x)f
γ

αβ �(x− x′)− 2κcαβ �′(x− x′). (5.2)

Thus, we have a realization of the so-called current algebra.
It is also convenient to consider the quantities

̄α = −X̄µ
α (ξ)[πµ + κλµρ(ξ)∂xξ

ρ] − κcαγ θ̄
γ
ρ (ξ)∂xξ

ρ,
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where the functions̄θαµ(y) are the components of the right-invariant Maurer–Cartan form
of G0 and the functions̄Xµ

α (y) are defined by the equality(B.11). One can show that

{̄α(x), ̄β(x′)} = −̄γ (x)f γαβ �(x− x′)+ 2κcαβ �′(x− x′) (5.3)

and that

{̇α(x), ̄β(x′)} = 0. (5.4)

The main relation used here is the equality(C.4).
Now, using the definition(4.6)of hµν(y), we obtain

hµν(y) = Xµ
α (y)c

αβXν
β(y),

where

cαγcγβ = δαβ.

The above equality allows us to demonstrate that

cαβjαjβ = hµν(ξ)[πµ + κλµρ(ξ)∂xξ
ρ][πν + κλνσ(ξ)∂xξ

σ ]

− 2κ∂xξ
µ[πµ + κλµρ(ξ)∂xξ

ρ] + κ2hµν(ξ)∂xξ
µ∂xξ

ν.

Further, the relation(B.20) leads to another representation ofhµν(y) andhµν(y):

hµν(y) = θ̄αµ(y)cαβθ̄
β
ν (y), hµν(y) = X̄µ

α (y)c
αβX̄ν

β(y).

Using these relations we find

cαβ̄α̄β = hµν(ξ)[πµ + κλµρ(ξ)∂xξ
ρ][πν + κλνσ(ξ)∂xξ

σ ]

+ 2κ∂xξ
µ[πµ + κλµρ(ξ)∂xξ

ρ] + κ2hµν(ξ)∂xξ
µ∂xξ

ν.

It becomes clear that the density of the HamiltonianH can be written in the Sugawara form
[34,35]

H = 1

4κ
[cαβjαjβ + cαβ̄α̄β] + κV(ξ). (5.5)

The quantitiesjα and̄α do not depend on the choice of coordinatesyµ in the Lie groupG0
but they depend on the choice of the basis{eα}. To get rid of this dependence introduce the
matrix-valued quantities

j = eαc
αβjβ, ̄ = eαc

αβ̄β.

Note thatj and ̄ are the Hamiltonian counterparts of the quantities−κγ−1∂−γ and
−κ∂+γγ−1, respectively.

Our next task is to rewrite the relations(5.2)–(5.4)in terms of Poisson brackets of the
matrix-valued quantitiesj and̄. Actually we will considerj and̄as functionals on the phase
space of the system taking values in the associative algebra MatN(R). The corresponding
definition of the Poisson bracket for algebra-valued functionals on a phase space and its
main properties are discussed inAppendix D.
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Consider the elementC ∈ g0 ⊗ g0 defined as

C = eα ⊗ eβc
αβ. (5.6)

Introducing the notation

eα = eβc
βα,

we can write

C = eα ⊗ eβcαβ = eα ⊗ eα = eα ⊗ eα.

Using the relation

[C, eγ ⊗ IN ] = [IN ⊗ eγ , C] = f
γ

αβe
α ⊗ eβ,

we obtain

{j(x)⊗̧j(x′)} = −[C, IN ⊗ j(x)] �(x− x′)− 2κC �′(x− x′), (5.7)

{̄(x)⊗̧̄(x′)} = [C, IN ⊗ ̄(x)] �(x− x′)+ 2κC �′(x− x′), (5.8)

{j(x)⊗̧̄(x′)} = 0. (5.9)

Using the relation(B.13), we come to the equality

{γ(x), jα(x′)} = −γ(x)eα �(x− x′)

that gives

{γ(x)⊗̧j(x′)} = −(γ(x)⊗ IN)C �(x− x′). (5.10)

Similarly, the relation(B.14) implies

{γ(x)⊗̧̄(x′)} = −C(γ(x)⊗ IN) �(x− x′). (5.11)

It is also clear that

{γ(x)⊗̧γ(x′)} = 0.

Taking into account(5.5), we obtain

H = 1

4κ
[B(j, j)+ B(̄, ̄)] − κB(a−, γ−1a+γ).

It is not difficult to write down the corresponding Hamiltonian equations. If we choose as
the basis quantities describing the phase space of the system the quantitiesγ andj, we come
to the equations

∂tγ = ∂xγ − 1

κ
γj, ∂tj = −∂xj − κ[a−, γ−1a+γ]. (5.12)
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In the case when the quantitiesγ and̄ are chosen as the basis quantities, one obtains

∂tγ = −∂xγ − 1

κ
̄γ, ∂t ̄ = ∂x̄− κ[γa−γ−1, a+]. (5.13)

It is clear that the obtained Hamiltonian equations are equivalent to the Todaequations (2.2)
and (2.3), respectively.

6. W -algebra

In this section we return again to the Toda system defined inSection 2and find the Poisson
brackets for the characteristic integrals given inSection 3. Recall that the Lie groupG0 in
the case under consideration is isomorphic to the direct product of two copies of the Lie
group GLn(R), and the Lie algebrag0 is isomorphic to the direct product of two copies of
the Lie algebragln(R).

The standard basis of the Lie algebragln(R) consists of the matriceseji , i, j = 1, . . . , n,
defined as

(e
j
i )
k
l = δki δ

j

l .

Certainly, these matrices form a basis of the algebra Matn(R), too. The main property of
these matrices is provided by the relation

e
j
i e
l
k = eliδ

j

k.

Using this relation and the equality

tr(eji ) = δ
j
i ,

one obtains

tr(eji e
l
k) = δliδ

j

k.

A natural basis of the Lie algebrag0 is formed by the matrices

E
(1)j
i =

(
e
j
i 0

0 0

)
, E

(2)j
i =

(
0 0

0 e
j
i

)
, i, j = 1, . . . , n.

Recall that we assumed the Lie algebrag0 in the case under consideration to be equipped
with the scalar productB defined by the relation(4.12). Therefore, we have

B(E
(r)j
i , E

(s)l
k ) = tr(E(r)j

i E
(s)l
k ) = δliδ

j

kδ
rs.

From the natural block matrix structure of the spaceg0 ⊗ g0, we see that the elementC
introduced by(5.6)has in our case the form

C =
(
Cn 0

0 Cn

)
, (6.1)
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where the elementCn ∈ gln(R)⊗ gln(R) is defined by the relation

Cn = e
j
i ⊗ eij.

One can verify the validity of the equalities

Cn(e
j
i ⊗ elk) = e

j

k ⊗ eli, (e
j
i ⊗ elk)Cn = eli ⊗ e

j

k.

These imply that the action of the permutation operatorP on gln(R) ⊗ gln(R), or on
Matn(R)⊗ Matn(R), can be realized with the help of the elementC as

P(a⊗ b) = Cn(a⊗ b)Cn.

Note also that

C2
n = In ⊗ In.

It is quite natural to use for the mappingγ the parameterization(2.8)and for the quantities
j and̄ the parameterizations

j =
(
J (1) 0

0 J (2)

)
, ̄ =

(
J̄
(1)

0

0 J̄
(2)

)
,

where the functionsJ (r) and J̄
(r)

, r = 1,2, take values ingln(R). It is clear that the
relations(5.7)–(5.9)can be written now as

{J (r)(x)⊗̧J (s)(x′)} = −([Cn, In ⊗ J (r)(x)] �(x− x′)+ 2κCn �′(x− x′))δrs,

(6.2)

{J̄ (r)(x)⊗̧J̄ (s)(x′)} = ([Cn, In ⊗ J̄ (r)(x)] �(x− x′)+ 2κCn �′(x− x′))δrs, (6.3)

{J (r)(x)⊗̧J̄ (s)(x′)} = 0, (6.4)

and the relations(5.10) and (5.11)take the forms

{Γ (r)(x)⊗̧J (s)(x′)} = −(Γ (r)(x)⊗ In)Cn �(x− x′)δrs, (6.5)

{Γ (r)(x)⊗̧J̄ (s)(x′)} = −Cn(Γ (r)(x)⊗ In) �(x− x′)δrs. (6.6)

The Hamiltonian equations of motion(5.12)are now of the forms

∂tΓ
(1) = ∂xΓ

(1) − 1

κ
Γ (1)J (1), ∂tJ

(1) = −∂xJ (1) + κΓ (1)−1Γ (2),

∂tΓ
(2) = ∂xΓ

(2) − 1

κ
Γ (2)J (2), ∂tJ

(2) = −∂xJ (2) − κΓ (1)−1Γ (2),
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while for Eqs. (5.13)we have

∂tΓ
(1) = −∂xΓ (1) − 1

κ
J̄
(1)
Γ (1), ∂tJ̄

(1) = ∂xJ̄
(1) + κΓ (2)Γ (1)−1,

∂tΓ
(2) = −∂xΓ (2) − 1

κ
J̄
(2)
Γ (2), ∂tJ̄

(2) = ∂xJ̄
(2) − κΓ (2)Γ (1)−1.

Let us find Hamiltonian counterparts of the characteristic integralsW1 andW2 defined by
the relation(3.8). There is no problem with the characteristic integralW1. Its Hamiltonian
counterpart obviously is

W1 = J (1) + J (2). (6.7)

The characteristic integralW2 contains higher time derivatives and has no direct Hamiltonian
counterpart. However, here one can use the fact that characteristic integrals are defined up to
terms vanishing at the equations of motion. Therefore, one can use the equations of motion
to get equivalent characteristic integrals which do not contain higher time derivatives.

For the case under consideration, using the definition(3.7), the equations of motion(2.9)
and the equality

∂− = ∂+ − 2∂x,

we obtain

1
2(∂−Σ

(1)
− − ∂−Σ(2)

− ) = −Γ (1)−1Γ (2) − (∂xΣ
(1)
− − ∂xΣ

(2)
− ).

Hence, the Hamiltonian counterpart of the characteristic integralW2 is

W2 = J (1)J (2) − κ(∂xJ
(1) − ∂xJ

(2))+ κ2Γ (1)−1Γ (2). (6.8)

The Poisson bracket for the characteristic integralW1 follows directly from(6.2)

{W1(x)⊗̧W1(x
′)} = −[Cn, In ⊗W1(x)] δ(x− x′)− 4κCn �′(x− x′). (6.9)

The calculations needed to obtain expressions for other Poisson brackets are more compli-
cated. The main formulas are presented inAppendix E. The final result is

{W1(x)⊗̧W2(x
′)} = −[Cn, In ⊗W2(x)] �(x− x′)

− κ[Cn, In ⊗W1(x
′)]+ �′(x− x′), (6.10)

{W2(x)⊗̧W2(x
′)}

= (In ⊗W2(x))Cn(In ⊗W1(x)) �(x− x′)
− (In ⊗W1(x))Cn(In ⊗W2(x)) �(x− x′)
− 1

2κ
2[Cn, In ⊗ ∂2

xW1(x)] �(x− x′)
+ κ[Cn, In ⊗ (W2(x)+W2(x

′))]+ �′(x− x′)
− κ(In ⊗W1(x))Cn(In ⊗W1(x)) �′(x− x′)
− κ(In ⊗W1(x

′))Cn(In ⊗W1(x
′)) �′(x− x′)

+ 3
2κ

2[Cn, In ⊗ (W1(x)+W1(x
′))] �′′(x− x′)+ 4κ3Cn �′′′(x− x′). (6.11)
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Some terms of the last formula can be combined into a commutator. Actually it would give
a more compact expression. Nevertheless, we prefer to use the above form of the expres-
sion which is more convenient for the comparison with the case considered in the next
section. After some redefinitions one can get convinced that the obtained expressions for
the Poisson brackets of the characteristic integrals coincide with the expressions obtained
via the method of Hamiltonian reduction[36]. Our direct rederivation of these expres-
sions can be considered, in particular, as the verification needed by the reasons given in
Section 1.

The Hamiltonian counterparts of the characteristic integralsW̄1 andW̄2 are

W̄1 = J̄ (1) + J̄ (2)
, (6.12)

W̄2 = J̄ (2)
J̄
(1) + κ(∂xJ̄

(1) − ∂xJ̄
(2)
)+ κ2Γ (2)Γ (1)−1, (6.13)

and the Poisson brackets for them look as

{W̄1(x)⊗̧W̄1(x
′)} = [Cn, In ⊗ W̄1(x)] �(x− x′)+ 4κCn �′(x− x′), (6.14)

{W̄1(x)⊗̧W̄2(x
′)}= [Cn, In ⊗ W̄2(x)] �(x− x′)+ κ [Cn, In ⊗ W̄1(x

′)]+ �′(x−x′),
(6.15)

{W̄2(x)⊗̧W̄2(x
′)}

= − (In ⊗ W̄2(x))Cn(In ⊗ W̄1(x)) �(x− x′)
+ (In ⊗ W̄1(x))Cn(In ⊗ W̄2(x)) �(x− x′)
+ 1

2κ
2[Cn, In ⊗ ∂2

xW̄1(x)] �(x− x′)
− κ[Cn, In ⊗ (W̄2(x)+ W̄2(x

′))]+ �′(x− x′)
+ κ (In ⊗ W̄1(x))Cn(In ⊗ W̄1(x)) �′(x− x′)
+ κ (In ⊗ W̄1(x

′))Cn(In ⊗ W̄1(x
′)) �′(x− x′)

− 3
2κ

2[Cn, In ⊗ (W̄1(x)+ W̄1(x
′))] �′′(x− x′)− 4κ3Cn �′′′(x− x′). (6.16)

Here we again write the result of our calculations in the form which is convenient from the
point of view of the example considered in the next section.

Let us find the Poisson bracket for the Hamiltonian counterpartsT ′−− andT ′++ of the
componentsT ′−− andT ′++ of the energy–momentum tensor. It is known that they are the
generators of the conformal transformations.

As follows from(4.13), one has

T ′
−− = 1

κ
tr[W 2

1 − 2W2], T ′
++ = 1

κ
tr[W̄

2
1 − 2W̄2].

To find the Poisson brackets in question, we start with the relation

{W 2
1(x)⊗̧W 1(x

′)} = −[Cn, In ⊗W 2
1(x)] �(x− x′)

− 4κ[Cn, In ⊗W 1(x)]+ �′(x− x′). (6.17)



526 Kh.S. Nirov, A.V. Razumov / Journal of Geometry and Physics 48 (2003) 505–545

This relation gives

{W 2
1(x)⊗̧W 2

1(x
′)}

= −[Cn, In ⊗W 3
1(x)] �(x− x′)− [Cn,W 1(x)⊗W 2

1(x)] �(x− x′)
−2κ[Cn, In ⊗ (W 1(x)∂xW 1(x)− ∂xW 1(x)W 1(x))]�(x− x′)
−2κ[Cn, In ⊗ (W 2

1(x)+W 2
1(x

′))]+ �′(x− x′)
−4κCn(W 1(x)⊗W 1(x)+W 1(x

′)⊗W 1(x
′)) �′(x− x′). (6.18)

For any Matn(R)-valued functionalsF andG one obtains

{trF, trG} = tr{F ⊗̧G}.
Besides, for anya, b ∈ Matn(R) one has

tr(a⊗ b) = tra tr b,

and

tr(Cn(a⊗ b)) = tr((a⊗ b)Cn) = tr(ab).

Using these relations, we obtain from(6.18)the equality

{trW2
1(x), trW2

1(x
′)} = −8κ(trW2

1(x)+ trW2
1(x

′)) �′(x− x′). (6.19)

The relation

{W2
1(x)⊗̧W2(x

′)} = −[Cn,W1(x)⊗W2(x)] �(x− x′)
− Cn(In ⊗W1(x)W2(x)−W2(x)W1(x)⊗ In) �(x− x′)
− κ[Cn,W1(x)⊗W1(x

′)]+ �′(x− x′)
− κCn(In ⊗W1(x)W1(x

′)+W1(x
′)W1(x)⊗ In) �′(x− x′)

(6.20)

helps us to obtain that

{trW2
1(x), trW2(x

′)} = −2κ(trW2
1(x)+ trW2

1(x
′)) �′(x− x′). (6.21)

Further, the relation(6.11)gives

{trW 2(x), trW 2(x
′)} = 2κ(trW 2(x)+ trW 2(x

′)) �′(x− x′)
− κ (trW 2

1(x)+ trW 2
1(x

′)) �′(x− x′)+ 4κ3n �′′′(x− x′).
(6.22)

Taking into account the relations(6.19), (6.21) and (6.22)we get

{T ′
−−(x), T

′
−−(x

′)} = −4(T ′
−−(x)+ T ′

−−(x
′)) �′(x− x′)+ 16κn �′′′(x− x′).
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In a similar way we come to the equality

{T ′
++(x), T

′
++(x

′)} = 4(T ′
++(x)+ T ′

++(x
′)) �′(x− x′)− 16κn �′′′(x− x′),

and it is evident that

{T ′
−−(x), T

′
++(x

′)} = 0.

It is clear from these relations that the quantities

V(x) = 1
4T

′
−−(x), V̄(x) = 1

4T
′

++(x) (6.23)

are generators of two copies of the Virasoro algebra:

{V(x),V(x′)} = −(V(x)+ V(x′)) �′(x− x′)+ κn �′′′(x− x′), (6.24)

{V̄(x), V̄(x′)} = (V̄(x)+ V̄(x′)) �′(x− x′)− κn �′′′(x− x′), (6.25)

{V(x), V̄(x′)} = 0. (6.26)

The generatorsV(x) and V̄(x) produce infinitesimal conformal transformations via the
following standard procedure. Let us define

Vε(t) =
∫

dx ε(t, x)V(t, x),

whereε is an arbitrary infinitesimal function onM which satisfies the relation

∂+ε = ∂tε+ ∂xε = 0.

Actually, Vε is an integrated characteristic integral, therefore, it does not depend ont.
Consider the infinitesimal transformations defined for an arbitrary observableF(t) as

�F(t) = {Vε(t), F(t)}.
It can be shown that these transformations are the infinitesimal version of the conformal
transformations described by the relation(2.13) and (2.14)with ζ+(z+) = z+. Similarly,
the quantities

V̄ε̄(t) =
∫

dx ε̄(t, x)V̄(t, x),

where

∂−ε̄ = ∂t ε̄− ∂xε̄ = 0

generate the infinitesimal conformal transformations described by the relation(2.13) and
(2.14)with ζ−(z−) = z−.

Now we will find the conformal weights ofW1 andW2. Recall that a fieldΦ(x) has the
conformal weighth with respect toV(x) if

{V(x),Φ(x′)} = −(Φ(x)+ (h− 1)Φ(x′)) �′(x− x′)+ · · · ,
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where the dots stand for possible central terms, and it has the conformal weighth̄ with
respect tōV(x) if

{V̄(x),Φ(x′)} = (Φ(x)+ (h̄− 1)Φ(x′)) �′(x− x′)+ · · · .
Introduce two mappings tr1 and tr2 from Matn(R)⊗ Matn(R) to Matn(R) given by

tr1(a⊗ b) = (tr a)b, tr2(a⊗ b) = a(tr b).

It can be verified that these mappings satisfy the relations

tr1 (Cn(a⊗ b)) = ab, tr1((a⊗ b)Cn) = ba,

tr2(Cn(a⊗ b)) = ba, tr2((a⊗ b)Cn) = ab.

For any Matn(R)-valued functionalsF andG one has

tr1 {F ⊗̧G} = {tr F ⊗̧G}, tr2{F ⊗̧G} = {F ⊗̧trG}.
Using the above relations, one obtains from(6.17) and (6.10)the equalities

{trW2
1(x)⊗̧W1(x

′)} = −8κW1(x) �(x− x′),

{trW2(x)⊗̧W1(x
′)} = −2κW1(x) �(x− x′).

Hence, we come to the relation

{V(x)⊗̧W1(x
′)} = −W1(x) �′(x− x′).

From the relation(6.20)we obtain

{trW2
1(x)⊗̧W2(x

′)} = −2(W1(x)W2(x)−W2(x)W1(x)) �(x− x′)

− 2κ(W2
1(x)+W2

1(x
′)) �′(x− x′),

and the equality(6.11)gives

{trW2(x)⊗̧W2(x
′)}

= −(W1(x)W2(x)−W2(x)W1(x)) �(x− x′)− κ(W2
1(x)+W2

1(x
′)) �′(x− x′)

+2κ(W2(x)+W2(x
′)) �′(x− x′)+ 4κ3In �′′′(x− x′).

Consequently, one has

{V(x)⊗̧W2(x
′)} = −(W2(x)+W2(x

′)) �′(x− x′)− 2κ2 �′′′(x− x′).

Thus, the characteristic integralW1 has the conformal weight 1 and the characteristic
integralW2 has the conformal weight 2 with respect toV(x). Similarly, we obtain that the
characteristic integral̄W1 has the conformal weight 1 and the characteristic integralW̄2
has the conformal weight 2 with respect toV̄(x).
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In the end of this section we find the form of the infinitesimal symmetry transformations
generated by the characteristic integrals. First consider the quantity

Wε(t) =
∫

dx tr[ε1(t, x)W1(t, x)+ ε2(t, x)W2(t, x)], (6.27)

whereε1 andε2 are arbitrary infinitesimal matrix-valued functions onM satisfying the
relations

∂+ε1 = ∂tε1 + ∂xε1 = 0, ∂+ε2 = ∂tε2 + ∂xε2 = 0.

The infinitesimal transformations generated byWε(t) written in the Lagrangian form are

�εΓ
(1) = Γ (1)ε1 − κΓ (1)Γ (2)−1∂−Γ (2)ε2 − 1

2κΓ
(1)∂−ε2, (6.28)

�εΓ
(2) = Γ (2)ε1 − κΓ (2)ε2Γ

(1)−1∂−Γ (1) + 1
2κΓ

(2)∂−ε2. (6.29)

According to(6.9)–(6.11), the generatorsWε satisfy the relation

{Wµ,Wν} =Wε(µ,ν) + C(µ, ν), (6.30)

with the infinitesimal matrix-valued functions and the central extension term being

ε1(µ, ν)= [µ1, ν1] + κ([∂xµ1, ν2]+ + [µ2, ∂xν1]+)− κ(∂xν2W1µ2 − ν2W1∂xµ2)

− κ2([∂2
xµ2, ν2] − [∂xµ2, ∂xν2] + [µ2, ∂

2
xν2]),

ε2(µ, ν)= [µ1, ν2] + [µ2, ν1] + (µ2W1ν2 − ν2W1µ2)

+ κ([µ2, ∂xν2]+ − [∂xµ2, ν2]+),

C(µ, ν)= 4κ
∫

dx tr(∂xµ1ν1)− 4κ3
∫

dx tr(∂3
xµ2ν2).

We see that the non-linear terms of theW-algebra made the transformation parameters
ε1 andε2 depending on the Toda fields and their derivatives, although only through the
characteristic integralW1.

Similarly, introducing the quantity

W̄ε̄(t) =
∫

dx tr[ε̄1(t, x)W̄1(t, x)+ ε̄2(t, x)W̄2(t, x)], (6.31)

where the infinitesimal matrix-valued functionsε̄1 andε̄2 satisfy the relations

∂−ε̄1 = ∂t ε̄1 − ∂xε̄1 = 0, ∂−ε̄2 = ∂t ε̄2 − ∂xε̄2 = 0,

we come to the following expressions for the infinitesimal transformations

�ε̄Γ
(1) = ε̄1Γ

(1) − κε̄2∂+Γ (2)Γ (2)−1Γ (1) − 1
2κ∂+ε̄2Γ

(1), (6.32)

�ε̄Γ
(2) = ε̄1Γ

(2) − κ∂+Γ (1)Γ (1)−1ε̄2Γ
(2) + 1

2κ∂+ε̄2Γ
(2). (6.33)

The generators̄Wε̄ give rise to a closed algebra of the form(6.30), that can be found from
the relations(6.14)–(6.16). Actually, we have

{W̄µ̄, W̄ν̄} = W̄ε̄(µ̄,ν̄) + C̄(µ̄, ν̄), (6.34)
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where

ε̄1(µ̄, ν̄)= −[µ̄1, ν̄1] − κ([∂xµ̄1, ν̄2]+ + [µ̄2, ∂xν̄1]+)+ κ(∂xν̄2W̄1µ̄2 − ν̄2W̄1∂xµ̄2)

+ κ2([∂2
xµ̄2, ν̄2] − [∂xµ̄2, ∂xν̄2] + [µ̄2, ∂

2
xν̄2]),

ε̄2(µ̄, ν̄)= −[µ̄1, ν̄2] − [µ̄2, ν̄1] − (µ̄2W̄1ν̄2 − ν̄2W̄1µ̄2)

− κ([µ̄2, ∂xν̄2]+ − [∂xµ̄2, ν̄2]+),

C̄(µ̄, ν̄)= −4κ
∫

dx tr(∂xµ̄1ν̄1)+ 4κ3
∫

dx tr(∂3
xµ̄2ν̄2).

One can verify that the transformations(6.28), (6.29), (6.32) and (6.33)are symmetry
transformations for the Toda system under consideration. Puttingε2 = 0 andε̄2 = 0 we
obtain the infinitesimal version of the transformations described by the relation(2.11).

7. Non-abelian Liouville equation

In this section we consider an example of a non-abelian Toda system associated with the
Lie group Spn(R). It is convenient for our purposes to define this Lie group as a subgroup
of the Lie group GL2n(R) formed by all matricesa ∈ GL2n(R) which satisfy the relation

atKna = Kn,

where the 2n× 2n matrixKn has the form

Kn =
(

0 Jn

−Jn 0

)

with Jn being the skew-diagonal unitn× n matrix. The superscript t as usually means the
transposition.

The Lie algebraspn(R) of the Lie group Spn(R) is formed by all real 2n× 2n matrices
x which satisfy the relation

xtKn +Knx = 0.

Using for a general 2n × 2n matrix x block representation(2.4), we see that the above
relation is equivalent to the equalities

xT
11 = −x22, xT

12 = x12, xT
21 = x21,

where for ann× n matrixx we have denoted

xT = (Jn)
−1xtJn = Jnx

tJn.

Actually the matrixxT is the transpose of the matrixx with respect to the main skew
diagonal.

Note that the matrixq defined by(2.5) belongs tospn(R) and defines itsZ-gradation.
Consider the Toda system associated with thisZ-gradation.
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One can verify that the Lie groupG0 in the case under consideration is formed by the
block 2n× 2n matricesa of the form

a =
(
b 0

0 (bT)−1

)
,

whereb is an arbitrary element of GLn(R). Hence, the subgroupG0 is isomorphic to the
Lie group GLn(R), and the mappingγ entering the general Todaequation (2.2), can be
parameterized as

γ =
(
Γ 0

0 (Γ T)−1

)
, (7.1)

where the mappingΓ takes values in GLn(R). The general form of the mappingsa− and
a+ is again given by(2.6). Here the mappingsA− andA+ must satisfy the relations(2.7)
and

AT
− = A−, AT

+ = A+.

PuttingA− = A+ = In we come to the following Toda equations

∂+(Γ−1∂−Γ) = −(Γ TΓ)−1. (7.2)

In the case ofn = 1 the mappingΓ is just an ordinary function onM taking values inR×.
If the functionΓ is continuous, then it is either positive or negative. For a positive function
Γ one can writeΓ = expF andEq. (7.2)takes the form

∂+∂−F = −exp(−2F),

that is the well-known Liouville equation. Therefore, it is natural to call the matrix differ-
entialequation (7.2)the non-abelian Liouville equation.

The system under consideration possesses a WZNW-type symmetry

Γ → Λ+ΓΛ−, (7.3)

where the matrix-valued functionsΛ− andΛ+ satisfy the conditions

∂+Λ− = 0, ∂−Λ+ = 0, ΛT
− = Λ−1

− , ΛT
+ = Λ−1

+ .

It is also conformally invariant. Here the action of the conformal transformations onΓ is
defined as

Γ(z−, z+) → [∂−ζ−(z−)∂+ζ+(z+)]−1/2Γ(ζ+(z+), ζ−(z−)). (7.4)

The procedure described inSection 3, leads now to the following matrix characteristic
integrals

W1 = −1
2κ(Σ− −ΣT

−), W2 = −κ2(1
2∂−(Σ− +ΣT

−)+Σ−ΣT
−), (7.5)

W̄1 = −1
2κ(Σ̄+ − Σ̄T

+), W̄2 = −κ2(1
2∂−(Σ̄+ + Σ̄T

+)+ Σ̄+Σ̄T
+), (7.6)
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where

Σ− = Γ−1∂−Γ, Σ̄+ = ∂+ΓΓ−1.

Here we have

WT
1 = −W1, W̄T

1 = −W̄1, WT
2 = W2, W̄T

2 = W̄2.

Therefore, in this case there are 2n2 independent characteristic integrals.
It is convenient to define the scalar product inspn(R) as

B(x, y) = 1
2tr(xy).

Taking into account the relations(4.10), (4.11), (7.5) and (7.6)we come to the following
expressions for the non-zero components of the conformally improved energy–momentum
tensor

T ′
−− = 1

2κ
tr[W2

1 − 2W2], T ′
++ = 1

2κ
tr[W̄2

1 − 2W̄2]. (7.7)

Proceed now to the Hamiltonian formalism. It is clear that the matrices

E
j
i =

(
e
j
i 0

0 −(eji )T

)
, i, j = 1, . . . , n,

form a basis of the Lie algebrag0 and one has

B(E
j
i , E

l
k) = δliδ

j

k.

Using the equality

e
j
i ⊗ eij = (e

j
i )

T ⊗ (eij)
T, (7.8)

we see that the elementC ∈ g0 ⊗ g0 is again given by the formula(6.1). Let us use for the
mappingγ the parameterization(7.1)and for the quantitiesj and̄ the parameterizations

j =
(
J 0

0 −J T

)
, ̄ =

(
J̄ 0

0 −J̄ T

)
,

where the functionsJ andJ̄ take values ingln(R). Now the relations(5.7)–(5.9)give

{J(x)⊗̧J(x′)} = −[Cn, In ⊗ J(x)] �(x− x′)− 2κCn �′(x− x′),

{J̄(x)⊗̧J̄(x′)} = [Cn, In ⊗ J̄(x)] �(x− x′)+ 2κCn �′(x− x′),

{J(x)⊗̧J̄(x′)} = 0,

and the relations(5.10) and (5.11)imply

{Γ(x)⊗̧J(x′)} = −(Γ(x)⊗ In)Cn �(x− x′),

{Γ(x)⊗̧J̄(x′)} = −Cn(Γ(x)⊗ In) �(x− x′).
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The Hamiltonian counterparts of the characteristic integralsW1 andW2 are

W1 = J− JT, (7.9)

W2 = −JJ T − κ(∂xJ+ ∂xJ
T)+ κ2Γ−1(Γ T)−1. (7.10)

To find the Poisson brackets for the characteristic integralsW1 andW2 we need to know the
Poisson brackets betweenΓ(x),J(x) andΓ T(x),JT(x). They can be found in the following
way. Letσ be a linear operator on Matn(R) acting as

σ(a) = aT.

From(D.1) it follows that

{J(x)⊗̧J T(x′)} = (idMatn(R) ⊗ σ)({J(x)⊗̧J(x′)}),

hence, we have

{J(x)⊗̧J T(x′)} = [C̃n, In ⊗ J T(x)] �(x− x′)− 2κC̃n �′(x− x′),

where

C̃n = (idMatn(R) ⊗ σ)(Cn) = e
j
i ⊗ (eij)

T.

Note that the element̃Cn can also be defined as

C̃n = (σ ⊗ idMatn(R))(Cn) = (e
j
i )

T ⊗ eij.

Using this relation and the equality(7.8), we obtain

{JT(x)⊗̧J(x′)} = −[C̃n, In ⊗ J(x)] �(x− x′)− 2κC̃n �′(x− x′),

{JT(x)⊗̧J T(x′)} = [Cn, In ⊗ J T(x)] �(x− x′)− 2κCn �′(x− x′).

In a similar way we come to the expressions

{Γ(x)⊗̧JT(x′)} = −(Γ(x)⊗ In)C̃n �(x− x′),

{Γ T(x)⊗̧J(x′)} = −C̃n(Γ T(x)⊗ In) �(x− x′),

{Γ T(x)⊗̧JT(x′)} = −Cn(Γ T(x)⊗ In) �(x− x′).

It can be verified that the elementC̃n satisfies the relations

C̃n(a⊗ b) = C̃n(In ⊗ aTb) = C̃n(b
Ta⊗ In),

(a⊗ b)C̃n = (In ⊗ baT)C̃n = (abT ⊗ In)C̃n
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which are used in obtaining the Poisson brackets forW1 andW2. These Poisson brackets
have the form

{W1(x)⊗̧W1(x
′)} = −[Cn − C̃n, In ⊗W1(x)] �(x− x′)− 4κ(Cn − C̃n) �′(x− x′),

{W1(x)⊗̧W2(x
′)} = −[Cn − C̃n, In ⊗W2(x)] �(x− x′)

− κ[Cn − C̃n, In ⊗W1(x
′)]+ �′(x− x′),

{W2(x)⊗̧W2(x
′)} = (In ⊗W2(x))(Cn + C̃n)(In ⊗W1(x)) �(x− x′)

− (In ⊗W1(x))(Cn + C̃n)(In ⊗W2(x)) �(x− x′)
− 1

2κ
2[Cn + C̃n, In ⊗ ∂2

xW1(x)] �(x− x′)

+ κ[Cn + C̃n, In ⊗ (W2(x)+W2(x
′))]+ �′(x− x′)

− κ (In ⊗W1(x))(Cn + C̃n)(In ⊗W1(x)) �′(x− x′)
− κ (In ⊗W1(x

′))(Cn + C̃n)(In ⊗W1(x
′)) �′(x− x′)

+ 3
2κ

2[Cn + C̃n, In ⊗ (W1(x)+W1(x
′))] �′′(x− x′)

+ 4κ3(Cn + C̃n) �′′′(x− x′).

Note that the first two expressions above can be obtained from the relations(6.9) and (6.10)
replacingCn by Cn − C̃n. One can also obtain the third expression from(6.11)replacing
Cn by Cn + C̃n. The same procedure can be used to obtain the Poisson brackets for the
Hamiltonian counterparts of the characteristic integralsW̄1 andW̄2, which are of the form

W̄1 = J̄− J̄ T
, (7.11)

W̄2 = −J̄ T
J̄+ κ(∂xJ̄+ ∂xJ̄

T
)+ κ2(Γ T)−1Γ−1, (7.12)

from the relations(6.14)–(6.16).
As follows from(7.7)the Hamiltonian counterparts of the non-vanishing components of

the energy–momentum tensor are

T ′
−− = 1

2κ
tr[W2

1 − 2W2], T ′
++ = 1

2κ
tr[W̄

2
1 − 2W̄2]. (7.13)

The quantitiesV(x) andV̄(x), defined by the relation(6.23), again give two copies of the
Virasoro algebra:

{V(x),V(x′)} = −(V(x)+ V(x′)) �′(x− x′)+ 1
2κn �′′′(x− x′), (7.14)

{V̄(x), V̄(x′)} = (V̄(x)+ V̄(x′)) �′(x− x′)− 1
2κn �′′′(x− x′), (7.15)

{V(x), V̄(x′)} = 0. (7.16)

They generate the conformal transformations(7.4). It can be shown that the characteristic
integralsW1(x) andW̄1(x) have the conformal weight 1 with respect toV(x) and V̄(x)
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respectively. The conformal weight of the characteristic integralsW2(x) andW̄2(x) with
respect toV(x) andV̄(x), respectively, is equal to 2.

We will not write explicit expressions for the infinitesimal symmetry transformations
generated by the characteristic integrals. They are similar to the transformations described
by relations(6.28), (6.29), (6.32) and (6.33). Note only that the characteristic integralsW1
andW̄1 generate WZNW-type symmetry transformations given by(7.3).

8. Conclusion

We found the classicalW-algebras and the corresponding infinitesimal symmetry trans-
formations for the simplest non-abelian Toda systems associated with the Lie groups
GL2n(R) and Spn(R). The block matrix structure of the systems under consideration re-
sults in the fact that the generators of theW-algebras appear as matrix-valued quantities.
Actually, it is this fact that gives us a possibility to write the defining relations in a compact
form.

To obtain theW-algebras for the case of the Toda systems related to the Lie group Spn(R)

one could also use the fact that the symplectic group is a subgroup of the general linear
group, implementing the reduced phase space formalism. In such a case, one should work
with the corresponding Dirac bracket. However, the calculations one should perform along
that line of approach turn out to be more cumbersome than those we have done. So, the
more direct approach to the problem presented here is certainly preferable, at least from a
technical point of view.

It is worth to note that the generators of theW-algebras obtained in the paper have
the conformal spin 1 or 2. Nevertheless, we gain non-linear defining relations. It is not
usual for the theory ofW-algebras, although it was observed in the theory ofV -algebras.
The latter are also extensions of the Virasoro algebra, but they allow for non-local terms
in expressions for the Poisson brackets of generators[37–41]. It seems that they can be
obtained from theW-algebras for non-abelian Toda systems by imposing the constraints
saying that the generators of the WZNW-type symmetry,W1 andW̄1 in our case, are equal
to zero, but the explicit relationship requires further investigation. The main problem here
is to determine the structure of the reduced phase space in the case when the group formed
by the WZNW-type symmetry transformations is non-abelian.
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Appendix A. Coordinates and metrics conventions

LetM be a two-dimensional orientable Riemannian manifoldM with metric tensorη of
index 1. Arbitrary coordinates onM are denoted byzi and for the partial derivatives we use
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the notation∂i = ∂/∂zi. Starting from the local representation forη,

η = ηij dzi ⊗ dzj,

we define the quantitiesηij by

ηikηkj = δij,

and denote det‖ηij‖ simply byη.
In the paper we deal with a flat two-dimensional manifoldM and use flat Minkowski

coordinatesz0, z1, such that the metric tensor is

η = −dz0 ⊗ dz0 + dz1 ⊗ dz1.

The light-front coordinatesz− andz+ are introduced by the relations

z− = 1
2(z

0 − z1), z+ = 1
2(z

0 + z1). (A.1)

The inverse transformation to the coordinatesz0 andz1 is given by

z0 = z− + z+, z1 = −z− + z+.

Using the light-front coordinates, we obtain for the metric tensor

η = −2 dz− ⊗ dz+ − 2 dz+ ⊗ dz−. (A.2)

The connection of partial derivatives is

∂− = ∂0 − ∂1, ∂+ = ∂0 + ∂1, ∂0 = 1
2(∂− + ∂+), ∂1 = 1

2(−∂− + ∂+).

Appendix B. Some information on matrix Lie groups

Let G be a real matrix Lie group or, in other words, a Lie subgroup of the Lie group
GLN(R). Denote byyµ some local coordinates onG and byg the matrix-valued function
which transforms the coordinatesyµ(a) of the elementa ∈ G into the elementa itself. The
left-invariant Maurer–Cartan formθ can be written as

θ = g−1(y)dg(y),

where the matrix-valued functiong−1 is defined by the equality

g−1(y)g(y) = IN.

It is easy to verify thatθ satisfies the relation

dθ + θ ∧ θ = 0. (B.1)

Using the basis of 1-forms dyµ, one can write

θ = g−1(y)∂µg(y)dyµ = θµ(y)dyµ, (B.2)
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whereθµ(y) are matrix-valued functions onM. Recall that the Maurer–Cartan form is a
g-valued one-form and therefore the functionsθµ(y) take values in the Lie algebrag of the
Lie groupG. The relation(B.1) is equivalent to the equalities

∂µθν(y)− ∂νθµ(y)+ [θµ(y), θν(y)] = 0. (B.3)

Choose some basis{eα} of g and denote byfαβγ the corresponding structure constants,

[eα, eβ] = eγf
γ

αβ.

Expand the functionsθµ(y) over the basis{eα},
θµ(y) = eαθ

α
µ(y). (B.4)

This gives the following representation for the left-invariant Maurer–Cartan form:

θ = eαθ
α
µ(y)dyµ. (B.5)

The relation(B.3) implies that

∂µθ
α
ν (y)− ∂νθ

α
µ(y)+ fαβγθ

β
µ(y)θ

γ
ν (y) = 0. (B.6)

Denote byXµ
α (y) the functions satisfying the relation

Xµ
α (y)θ

α
ν (y) = δµν . (B.7)

Note that the functionsXµ
α (y) are the components of the left-invariant vector fieldsXα =

X
µ
α (y)∂µ onG. It is not difficult to see that(B.6) implies

Xµ
α (y)∂µX

ν
β(y)−X

µ
β (y)∂µX

ν
α(y) = Xν

γ(y)f
γ

αβ (B.8)

that, in terms of the vector fieldsXα, can be written as

[Xα,Xβ] = Xγf
γ

αβ.

The right-invariant Maurer–Cartan form

θ̄ = dg(y)g−1(y)

satisfies the relation

dθ̄ − θ̄ ∧ θ̄ = 0.

Introducing the local expansion

θ̄ = eαθ̄
α
µ(y)dyµ, (B.9)

we obtain for the functions̄θαµ(y) the following equalities:

∂µθ̄
α
ν (y)− ∂νθ̄

α
µ(y)− fαβγ θ̄

β
µ(y)θ̄

γ
ν (y) = 0. (B.10)

The functionsX̄µ
α (y) defined by

X̄µ
α (y)θ̄

α
ν (y) = δµν (B.11)
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are the components of the right-invariant vector fieldsX̄α = X̄
µ
α (y)∂µ onG. The equalities

(B.10) imply that

X̄µ
α (y)∂µX̄

ν
β(y)− X̄

µ
β (y)∂µX̄

ν
α(y) = −X̄ν

γ (y)f
γ

αβ (B.12)

that is equivalent to

[X̄α, X̄β] = −X̄γf
γ

αβ.

From(B.2) and (B.4)we obtain

Xαg(y) = g(y)eα. (B.13)

This means that the vector fieldsXα are generators of right shifts in the Lie groupG.
Correspondingly, the equality

X̄αg(y) = eαg(y) (B.14)

tells us that the vector fields̄Xα are generators of left shifts. Now, using(B.13) and (B.14),
we see that

[Xα, X̄β]g(y) = 0

that implies the equality

[Xα, X̄β] = 0.

In terms of the components we present the above equality in the form

Xµ
α (y)∂µX̄

ν
β(y)− X̄

µ
β (y)∂µX

ν
α(y) = 0.

Since we are working with a matrix Lie groupG, the adjoint representation ofG can be
defined by the relation

Ad(a)x = axa−1,

and the matrix of Ad(a) with respect to the basis{eα} of g is defined by the equality

Ad(a)eα = eβ Adβα(a).

Consider the action of the left-invariant vector fieldXα on the matrix-valued function
geβg−1. Using the equality

Xαg
−1(y) = −g−1(y)Xαg(y)g

−1(y)

and the relation(B.13), we obtain

Xα(g(y)eβg
−1(y)) = g(y)eγg

−1(y)f
γ

αβ.

In terms of the matrix elements we obtain

Xα(Adγβ(g(y))) = Adγδ (g(y))f
δ
αβ.
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It is not difficult to show that

Xα(Adγβ(g
−1(y)) = −fγαδ Adδβ(g

−1(y)). (B.15)

Recall that for anya ∈ G the operator Ad(a) is an automorphism ofg:

Ad(a)[x, y] = [Ad(a)x,Ad(a)y].

In terms of components this equality takes the form

Adαδ (a)f
δ
βγ = fαεζ Adεβ(a)Adζγ (a).

The right-invariant Maurer–Cartan form and the left-invariant one are connected by the
relation

θ̄ = g(y)θg−1(y).

Using(B.5) and (B.9), we obtain the equality

Adαβ(g(y)) = θ̄αµ(y)X
µ
β (y). (B.16)

Suppose that the Lie algebrag is endowed with a non-degenerate symmetric invariant scalar
product. This means that there is given a bilinear mappingB : g × g→ R, satisfying the
relations

B(x, y) = B(y, x), (B.17)

B([x, y], z) = B(x, [y, z]), (B.18)

and the condition that ifB(x, y) = 0 for all y ∈ g thenx = 0.
From(B.17) it follows that for the quantities

cαβ = B(eα, eβ) (B.19)

one has

cαβ = cβα,

and the non-degeneracy of the scalar productB implies that the matrix‖cαβ‖ is invertible.
Using the relation(B.18), one can show that the quantities

fαβγ = cαδf
δ
βγ

are totally antisymmetric with respect to the indicesα, β andγ. It can also be shown that
in the case under consideration

fαβα = 0.

This equality implies that if the Lie groupG is connected then it is unimodular.
Actually we assume in the paper that the scalar productB is Ad-invariant. It means that

for anya ∈ G and anyx, y ∈ g one has

B(Ad(a)x,Ad(a)y) = B(x, y).
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In terms of components and matrix elements we have

cγδ Adγα(a)Adδβ(a) = cαβ.

Using the equality(B.16), we obtain

cαβθ̄
α
µ(y)θ̄

β
ν (y) = cαβθ

α
µ(y)θ

β
ν (y). (B.20)

The last expressions establish the bi-invariant metric tensor on theG-group manifold, related
to the local coordinatesyµ.

In construction of the action of the WZNW model one uses the three-form

Θ = 1

3!
B(θµ(y), [θν(y), θρ(y)])dyµ ∧ dyν ∧ dyρ. (B.21)

Using(B.3), one can show that this form is closed, but, in general, it is not exact. Locally
for some two-form

λ = 1

2!
λµν(y)dyµ ∧ dyν.

We can write

Θ = dλ. (B.22)

Taking into account(B.4), we have

Θ = 1

3!
fαβγθ

α
µ(y)θ

β
ν (y)θ

γ
ρ(y)dyµ ∧ dyν ∧ dyρ,

and the relation(B.22) implies

∂µλνρ(y)+ ∂νλρµ(y)+ ∂ρλµν(y) = fαβγθ
α
µ(y)θ

β
ν (y)θ

γ
ρ(y). (B.23)

Appendix C. Current algebra

To find the Poisson brackets forjα(x) write

{πµ(x)+ κλµρ(ξ(x))∂xξ
ρ(x), πν(x

′)+ κλνσ(ξ(x
′))∂xξσ(x′)}

= −κ[∂µλνρ(ξ(x))+ ∂νλρµ(ξ(x))+ ∂ρλµν(ξ(x))]∂xξ
ρ(x) �(x− x′).

Taking into account equality(B.23), we obtain

{πµ(x)+ κλµρ(ξ(x))∂xξ
ρ(x), πν(x

′)+ κλνσ(ξ(x
′))∂xξσ(x′)}

= −κfαβγθαµ(ξ(x))θβν (ξ(x))θγρ(ξ(x)) ∂xξρ(x) �(x− x′).

Hence, using the equalities(B.8) we find

{−Xµ
α (ξ(x))[πµ(x)+ κλµρ(ξ(x))∂xξ

ρ(x)],

−Xν
β(ξ(x

′))[πν(x′)+ κλνσ(ξ(x
′))∂xξσ(x′)]}

= −Xρ
γ(ξ(x))[πρ(x)+ κλρσ(ξ(x))∂xξ

σ(x)]fγαβ �(x− x′)

−κcγδθδσ(ξ(x))∂xξσ(x)f γαβ �(x− x′). (C.1)
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It is easy to get convinced that

{−Xµ
α (ξ(x))[πµ(x)+ κλµρ(ξ(x))∂xξ

ρ(x)], κcβδθ
δ
σ(ξ(x

′))∂xξσ(x′)}
= κXµ

α (ξ(x))cβδ[∂µθ
δ
σ(ξ(x))− ∂σθ

δ
µ(ξ(x))]∂xξ

σ(x) �(x− x′)− κcαβ �′(x− x′).

Using the relation(B.6), we come to

{−Xµ
α (ξ(x))[πµ(x)+ κλµρ(ξ(x))∂xξ

ρ(x)], κcβδθ
δ
σ(ξ(x

′))∂xξσ(x′)}
= κcγδθ

δ
σ(ξ(x))∂xξ

σ(x)f
γ

αβ �(x− x′)− κcαβ �′(x− x′). (C.2)

Similarly we obtain

{κcαγθγρ(ξ(x))∂xξρ(x),−Xν
β(ξ(x

′))[πν(x′)+ κλνσ(ξ(x
′))∂xξσ(x′)]}

= κcγδθ
δ
σ(ξ(x))∂xξ

σ(x)f
γ

αβ �(x− x′)− κcαβ �′(x− x′). (C.3)

Finally, the equalities(C.1)–(C.3)give the relation(5.2).
To find the expression for the Poisson brackets of̄α we write the equality

̄α = −(Xµ
β (ξ)[πµ + κλµρ(ξ)∂xξ

ρ] + κcβγθ
γ
µ(ξ)∂xξ

µ)Adβα(g
−1) (C.4)

which follows from(B.16) and (B.20). Now using(C.1)–(C.3) and (B.15)we obtain(5.3).
In a similar way we arrive at the relation(5.4).

Appendix D. Algebra-valued functions on a phase space

Let A1 andA2 be two unital algebras with the units 1A1 and 1A2. The Poisson bracket
of anA1-valued functionF and anA2-valued functionG on a symplectic manifoldM is
defined in the following way. Choose some basis{eα} of A1 and some basis{fi} of A2.
Expand the functionsF andG over the bases,

F = eαF
α, G = fi G

i.

Then the Poisson bracket ofF andG is defined as anA1 ⊗ A2-valued function

{F ⊗̧G} = eα ⊗ fi{Fα,Gi}.

The Poisson bracket{F ⊗̧G} does not depend on the choice of the bases{eα} and{fi}.
Introducing the linear mappingP fromA1 ⊗ A2 toA2 ⊗ A1 defined by the relation

P(a⊗ b) = b⊗ a,

we can reformulate the usual properties of the Poisson bracket as follows:

{F ⊗̧G} = −P ◦ {G⊗̧F }, {F ⊗̧GH} = {F ⊗̧G}(1A1 ⊗H)+ (1A1 ⊗G){F ⊗̧H},
{FG⊗̧H} = (F ⊗ 1A2){G⊗̧H} + {F ⊗̧H}(G⊗ 1A2).
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It is clear thatP is an isomorphism of the algebrasA1 ⊗ A2 andA2 ⊗ A1. The Jacobi
identity for the usual Poisson bracket implies

P13 ◦ {F ⊗̧{G⊗̧H}} + P23 ◦ {H⊗̧{F ⊗̧G}} + P12 ◦ {G⊗̧{H⊗̧F }} = 0.

HereP13 is the linear mapping fromA1 ⊗ A2 ⊗ A3 to A3 ⊗ A2 ⊗ A1 permuting the first
and the third factors:

P13(a⊗ b⊗ c) = c ⊗ b⊗ a.

The linear mappingsP12 andP23 are defined analogously.
Let σ1 be a linear mapping from an algebraA1 to an algebraB1, andσ2 be a linear

mapping from an algebraA2 to an algebraB2. It can be easily shown that

{σ1 ◦ F ⊗̧G} = (σ1 ⊗ idA2)({F ⊗̧G}), {F ⊗̧σ2 ◦G} = (idA1 ⊗ σ2)({F ⊗̧G}).
(D.1)

Appendix E. W-algebra calculations

To obtain the expression for the Poisson bracket ofW1 andW2 we find first

{J (1)(x)+ J (2)(x)⊗̧J (1)(x′)J (2)(x′)}
= −[Cn, In ⊗ J (1)(x)J (2)(x)] �(x− x′)− 2κCn (J

(1)(x′)⊗ In) �′(x− x′)
−2κ(J (2)(x′)⊗ In)Cn �′(x− x′), (E.1)

{J (1)(x)+ J (2)(x)⊗̧ − κ(∂xJ
(1)(x′)− ∂xJ

(2)(x′))}
= −[Cn, In ⊗ −κ(∂xJ (1)(x)− ∂xJ

(2)(x))] �(x− x′)
−κ[Cn, In ⊗ (J (1)(x′)− J (2)(x′))] �′(x− x′). (E.2)

We also need the Poisson brackets ofJ (r) with Γ (r)−1. To find them note that relation(6.5)
implies

{J (r)(x)⊗̧Γ (s)(x′)} = (In ⊗ Γ (r)(x))Cn �(x− x′)δrs.

Writing now the relation

{J (r)(x)⊗̧Γ (s)(x′)Γ (s)−1(x′)} = (In ⊗ Γ (r)(x))Cn(In ⊗ Γ (s)−1(x′)) �(x− x′)δrs

+ (In ⊗ Γ (s)(x′)){J(r)(x)⊗̧Γ (s)−1(x′)} = 0,

we obtain

{J (r)(x)⊗̧Γ (s)−1(x′)} = −Cn (In ⊗ Γ (r)−1(x)) �(x− x′)δrs.
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Using this equality, we come to

{J (1)(x)+ J (2)(x)⊗̧κ2Γ (1)−1(x′)Γ (2)(x′)}
= −[Cn, In ⊗ κ2Γ (1)−1(x)Γ (2)(x)] �(x− x′). (E.3)

Collecting the equalities(E.1)–(E.3), we obtain the relation(6.10).
The calculation of the Poisson bracket forW2 is more complicated. The main formulas

used here are

{J (1)(x)J (2)(x)⊗̧J (1)(x′)J (2)(x′)}
= −[Cn, (J

(1)(x)+ J (2)(x))⊗ J (1)(x)J (2)(x)] �(x− x′)
−2κCn(J

(1)(x′)⊗ J (1)(x)) �′(x− x′)− 2κCn(J
(2)(x)⊗ J (2)(x′)) �′(x− x′),

J (1)(x)J (2)(x)⊗̧ − κ(∂xJ
(1)(x′)− ∂xJ

(2)(x′))}
= κ[Cn, In ⊗ J (1)(x)J (2)(x)]+ �′(x− x′)− 2κCn(J

(2)(x)⊗ J (1)(x)) �′(x− x′)
+ 2κ2Cn(In ⊗ J (1)(x)) �′′(x− x′)− 2κ2Cn(In ⊗ J (2)(x)) �′′(x− x′),

{J (1)(x)J (2)(x)⊗̧κ2Γ (1)−1(x′)Γ (2)(x′)}
= κ2(J (1)(x)⊗ Γ (1)−1(x)Γ (2)(x))Cn �(x− x′)

−κ2Cn(J
(2)(x)⊗ Γ (1)−1(x)Γ (2)(x)) �(x− x′),

{−κ(∂xJ (1)(x)− ∂xJ
(2)(x))⊗̧ − κ(∂xJ

(1)(x′)− ∂xJ
(2)(x′))}

= κ2[Cn, In ⊗ (∂xJ
(1)(x)+ ∂xJ

(2)(x))] �′(x− x′)
+κ2[Cn, In ⊗ (J (1)(x)+ J (2)(x))] �′′(x− x′)+ 4κ3Cn �′′′(x− x′),

{−κ(∂xJ (1)(x)− ∂xJ
(2)(x))⊗

,
κ2Γ (1)−1(x′)Γ (2)(x′)}

= κ3[Cn, In ⊗ Γ (1)−1(x′)Γ (2)(x′)]+ �′(x− x′).

Using these equalities, after some rearrangement of terms we come to the relation(6.11).
The relations(6.14)–(6.16)can be proven in the same way.
Now we will show that

{Wr(x)⊗̧W̄s(x
′)} = 0. (E.4)

For r = s = 1 this is a direct consequence of the equality(6.4). For the casesr = 1, s = 2
andr = 2, s = 1 we come to(E.4) through the relations

{J(1)(x)+ J(2)(x)⊗̧κ2Γ (2)(x′)Γ (1)−1(x′)} = 0,

{κ2Γ (1)−1(x)Γ (2)(x)⊗̧J̄ (1)(x′)+ J̄ (2)(x′)} = 0.
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Finally, using the equalities

{J (1)(x)J (2)(x)⊗̧κ2Γ (2)(x′)Γ (1)−1(x′)}
= κ2 (J (1)(x)Γ (1)−1(x)⊗ Γ (2)(x)− Γ (1)−1(x)⊗ Γ (2)(x)J (2)(x)) �(x− x′),

{κ2Γ (1)−1(x)Γ (2)(x)⊗̧J̄ (2)
(x′)J̄ (1)

(x′)}
= −κ2(Γ (1)−1(x)J̄

(1)
(x)⊗ Γ (2)(x)− Γ (1)−1(x)⊗ J̄ (2)

(x)Γ (2)(x)) �(x− x′),
{−κ(∂xJ (1)(x)− ∂xJ

(2)(x))⊗̧κ2Γ (2)(x′)Γ (1)−1(x′)}
+ {κ2Γ (1)−1(x)Γ (2)(x)⊗̧κ(∂xJ̄ (1)

(x′)− ∂xJ̄
(2)
(x′)}

= 2κ3(−Γ (1)−1(x)∂xΓ
(1)(x)Γ (1)−1(x)⊗ Γ (2)(x)

+ Γ (1)−1(x)⊗ ∂xΓ
(2)(x)) �(x− x′),

and taking into account the identity

J(r) = Γ (r)−1J̄
(r)
Γ (r) + 2κΓ (r)−1∂xΓ

(r),

we see that(E.4) is valid for the caser = s = 2 as well.
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